
Haemostasis biomarkers Quantitative analysis

Annick de Vries , Chief Scientific Officer, Sanquin on behalf of Ian de Bus, PhD

-

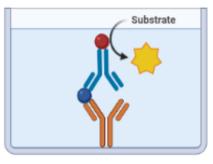
Importance of haemostatic risk assessment for drug approval

- Nearly 90% of drugs fail during clinical trials
- Unacceptable toxicity; ~ 60% (preclinical toxicology and clinical safety).
- Cardiovascular-related complications often cited as primary driver of drug attrition
- Alterations in coagulation/fibrinolysis play a critical role in risks
- Drug safety related to haemostatic risk has long been underestimated and received too little attention

Haemostasis:

Challenges in (pre)clinical sample analysis

- Sample volumes required in preclinical setting
 - No/limited multiplexing possible
- Monitoring endogenous biomarkers
 - Drug interference/ endogenous marker different in human and animal
 - Matrix interference
 - Lot-to-lot variation in kits
- Sample handling requirements
- Complexity of tightly regulated coagulation system

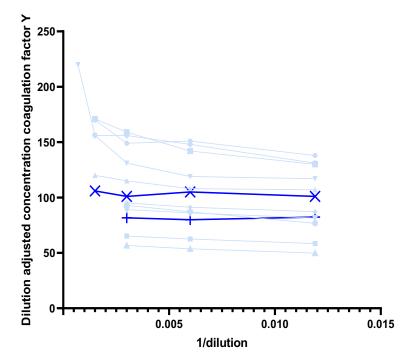

Case studies

I

Pre-clinical sample analysis in human ELISA

Coagulation factor Y - Perform Context of Use validation and preparation of QC samples

- Ten individual cyno plasma samples measured for endogenous coagulation factor Y.
- Determine QCs for validation (QC-high, QC-mid, QC-low).
- Prepare human spiked recombinant protein in QC-mid
 - when increase in factor Y basal levels is expected.
- Prepare diluted QC-low in human factor Y depleted plasma
 - when decrease in factor Y basal levels is expected.



Rabbit anti-human Factor Y coupled with peroxidase Factor Y from sample Rabbit anti-human Factor Y

Factor Y ELISA assay parallelism

-

.

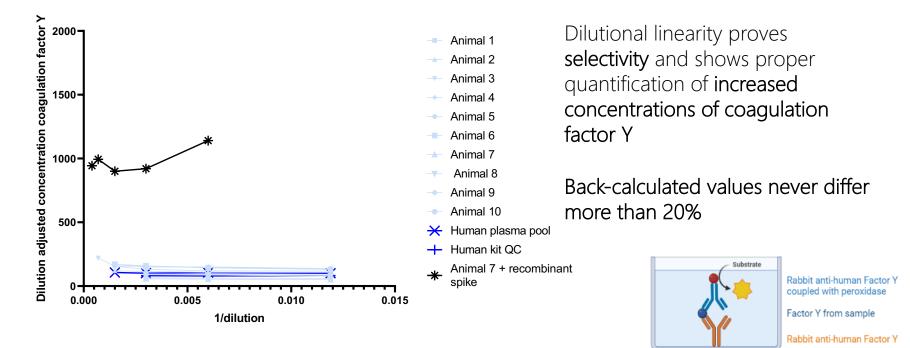
Animal 8

Animal 9

Animal 10 -

- × Human plasma pool
- + Human kit QC

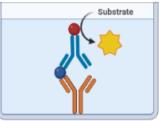
Substrate


Rabbit anti-human Factor Y coupled with peroxidase

Factor Y from sample

Rabbit anti-human Factor Y

Sample parallelism proves selectivity.


Dilutional linearity of spiked human recombinant factor Y

QC-low shows dilutional linearity in human factor Y depleted plasma

QC samples in depleted plasma	Run 1	Run 2	Run 3	Mean Run 1-3	CV (%)	Recovery (%)
QC-High	112	109	99.4	107	6.0	
QC-Mid	49.1	55.4	50.5	51.6	6.4	
QC-Low	40.3	40.8	N/A	40.5	1.0	100
QC Low 50% diluted in depleted plasma	18.6	17.2	20.7	18.8	9.4	93
QC Low 75% diluted in depleted plasma	9.79	10.8	10.8	10.5	5.6	103
QC Low 87.5% diluted in depleted plasma	5.12	7.01	6.64	6.25	16	123

accurately measure low concentrations

Rabbit anti-human Factor Y coupled with peroxidase

Factor Y from sample

Rabbit anti-human Factor Y

- Refer to the Context of Use
- Ensure to mention that human proteins/kits/plasma are used for preclinical assay development/validation of an animal protein.
- Refer to the method set-up for human used for cyno as semi-quantitative.
- Report data as human equivalent (*i.e.* nM human equivalent Factor Y).

J

Sample collection and handling

- 1. Potential activation of coagulation when performed inaccurately
- 2. Instability of coagulation proteins (higher stability in 3.2% citrate plasma)

Potential effects:

- 1. Analysis of individual samples vs. pools
- 2. Venipuncture effects unwanted activation of coagulation
- 3. (In)activation of coagulation proteins

aliquot variation in coagulation assay

Each run represents different aliquot Aliquots taken at same day from same animal show differences

Inter-assay runs		Run 1	Run 2	Run 3	Run 4	Run 5	Run 6			
	Theoretical Activity (mIU/mL)	Activity (mIU/mL)	Activity (mIU/mL)	Activity (mIU/mL)	Activity (mIU/mL)	Activity (mIU/mL)	Activity (mIU/mL)	Mean Activity (mIU/mL)	Accuracy (%)	% CV
QC-low cyno sample	76.0	53.5	123	126	49.2	53.8	105	85.1	112	43
Kit QC 1 LOW	61.0	54.9	65.5	67.4	61.9	64.2	64.7	63.1	103	7
Kit QC 2 HIGH	153	153	163	166	156	153	147	156	102	4

Intra-assay runs		Sample 1	Sample 2	Sample 3			
	Theoretical Activity (mIU/mL)	Activity (mIU/mL)	Activity (mIU/mL)	Activity (mIU/mL)	Mean Activity (mIU/mL)	Accuracy (%)	% CV
QC-low	76.0	124.4	124.7	120.4	123	162	2

Aliquot used for "QC low value" differed from aliquots taken at same day from same animal show differences

Use pooled aliquoted QC samples to average out differences in sample storage/shipping/handling before arrival at the test location.

Inter-assay runs		Run 1	Run 2	Run 3	Run 4	Run 5	Run 6			
	Theoretical Activity (mIU/mL)	Activity (mIU/mL)	Activity (mIU/mL)	Activity (mIU/mL)	Activity (mIU/mL)	Activity (mIU/mL)	Activity (mIU/mL)	Mean Activity (mIU/mL)	Accuracy (%)	% CV
QC-low	142.0	153.2	127.6	155.5	137.3	146.3	158.4	146.4	103	8
Kit QC 1 LOW	61.0	69.4	55.8	66.3	63.6	63.6	74.9	65.6	108	10
Kit QC 2 HIGH	153.0	167.9	136.0	154.5	147.9	161.5	175.9	157.3	103	9

Intra-assay runs		Run 1	Run 2	Run 3			
	Theoretical Activity (mIU/mL)	Activity (mIU/mL)	Activity (mIU/mL)	Activity (mIU/mL)	Mean Activity (mIU/mL)	Accuracy (%)	% CV
QC-low	142.0	153.3	154.3	152.1	153.2	108	1

Assay kit lot-to-lot variation

During a pre-clinical sample analysis, lot of coagulation assay kit was changed.

Two challenges were encountered:

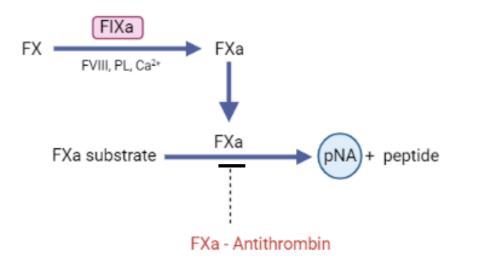
- 1. Bias between lots
- 2. QCs of new lot were out of spec

	Result	Result	
Sample name	mIU/mL lot A	mIU/mL lot B	Bias lot B vs lot A(%)
Control 1 lot A (46 - 76 mIU/mL)	62.8	69.0	10
Control 1 lot B (47 - 79 mIU/mL)	59.4	67.1	13
Sample 1	241	272	13
Sample 2	158	182	15
Sample 3	165	195	18
Sample 4	148	179	21
Sample 5	90.8	101	11
Sample 6	156	190	21
Sample 7	280	330	18
Sample 8	346	416	20
Sample 9	140	173	24
Sample 10	64.8	75.5	17
Control 2 lot A (129 - 177 mIU/mL)	154	187	22
Control 2 lot B (131 - 181 mIU/mL)	160	183	14

Assay kit lot-to-lot variation

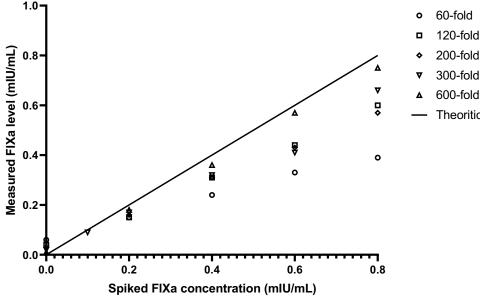
Run 1 - Lot A							
Name	Result (mIU/mL)	Target (mIU/mL)	Recovery (%)				
Control 1 (lot A)	64.4	61	106				
Control 2 (lot A)	172.2	153	113				
Calibrator (lot A)	307.9	321	96				
Control 1 (lot B)	60.3	63	96				
Control 2 (lot B)	174.2	156	112				
Calibrator (lot B)	244.4	322	76				
Control 1 (lot A)	59.1	61	97				
Control 2 (lot A)	162.8	153	106				
Control 2 (lot A - as calibrator)	156.8	153	102				

Calibrator of new lot B was too low, resulting in an over-estimation.


Our approach:

Concentration of new calibrator was measured using previous kit lot A and this concentration was then used in preclinical study.

Run 2 - Lot B							
Name	Result (mIU/mL)	Target (mIU/mL)	Recovery (%)				
Control 1 (lot B)	81.4	63	129				
Control 2 (lot B)	212.3	156	136				
Calibrator (lot B)	315.5	322	98				
Control 1 (lot A)	77.2	61	127				
Control 2 (lot A)	186.8	153	122				
Calibrator (lot A)	380.5	321	119				
Control 1 (lot B)	76.5	63	121				
Control 2 (lot B)	198.7	156	127				
Control 2 (lot B - as calibrator)	199.9	156	128				


FIXa activity determination using chromogenic assay

Challenge: Antithrombin present in sample matrix potentially interferes in FIXa activity assay, due to complexation with FXa.

Anti-thrombin interference dilutional effect

- 60-fold
- 200-fold
- 300-fold
- 600-fold
- Theoritical
- Reduced FIXa levels due to antithrombin interference in sample matrix.
- Dilution of matrix in sample buffer ٠ decreases matrix effect.
- CoU Trade off Accuracy vs. Sensitivity. ٠

Haemostasis biomarkers are difficult to measure, can be done if you take into account how to

- measure and report endogenous biomarkers to Context of Use principles
- utilise human kits for animal samples
- measure and report (pre)clinical studies
- handle samples
- overcome lot-to-lot variation
- approach matrix/drug interference

Acknowledgements

R&D team Sanquin Diagnostic Services & Sanquin Research

- Ian de Bus, PhD
- Jeannette Rentenaar
- Karien Bloem, PhD
- Joost Meijers, PhD