Oligonucleotide bioanalytical method development - triple quadrupole and high-resolution mass spectrometric detection - the benefits and challenges of selecting the technology

Daniel Schulz-Jander, Ph.D.

#### Oligonucleotides Quantitation by LC-HRMS or LC-MS/MS IND/CTA-ENABLING STUDIES FOR OLIGONUCLEOTIDES: ALL NEED BIOANALYTICAL DATA

- The physicochemical properties of oligonucleotide therapeutics (ASO, miRNA, siRNA, nucleic acid aptamers, and antibody-oligonucleotide conjugates) make quantitation of these compounds in biological matrices very challenging.
- Different quantitative approaches have been used, such as hELISA, hHPLCfluorescence, HPLC-UV, hUPLC-MS/MS, UPLC-MS/MS, and UPLC-HRMS.
- This presentation will discuss the bioanalytical differences between LC-MS/MS and LC-HRMS for this modality.

- Participant to understand
  - the chromatographic conditions to separate oligonucleotide drugs and their metabolites.
  - the differences between MS/MS format or HRMS format for oligonucleotides quantitation.
  - the 'working' mass resolution requires to quantitate oligonucleotides in HRMS.



- In vitro
  - Metabolism
    - Metabolic Stability / Clearance
    - Metabolite Profiling / Identification
    - Reaction Phenotyping
  - Plasma Protein Binding
  - Drug-Drug Interactions
    - Up / down regulation of drug metabolizing enzymes; Cellular Uptake/Distribution
    - CYP450 inhibition
    - CYP450 induction
    - Drug Transporters

#### In vivo

- PK / PD / Biodistribution Studies
  - Rat Single and/or Multiple Dose
  - NHP Single and/or Multiple Dose
- General Toxicity Studies
  - Rat DRF & TK
  - Rat Definitive Toxicity & TK (4 weeks or 13 weeks)
  - NHP DRF & TK
  - NHP Definitive Toxicity & TK (4 weeks or 13 weeks)
- Genetic Tox / Safety Pharma Studies
  - Rat Micronucleus & TK
  - NHP CV & TK
- Radiolabel ADME Studies
  - Mass Balance / Excretion
  - QWBA
  - Metabolite Profiling/ID (plasma/tissue)



IND/CTA-ENABLING STUDIES FOR OLIGONUCLEOTIDES: ALL NEED BIOANALYTICAL DATA

#### Bioanalysis

- Modifications (thiophosphorolate, PMO, cholesterol, GalNAc, lipids, ...)
- Species
  - Mice, rat, NHP, mini-pig, rabbit, human
- Matrices
  - Hepatocytes, cellular fractions
  - Plasma, Excreta (urine, cage wash, bile, feces)
  - Tissues (liver, kidney, adrenal, thymus, thyroid, brain, CSF, lung, heart, intestine, pancreas, spleen, testes, ovaries, ...)

#### Criteria

- GLP: plasma and 'critical' tissues
- Non-GLP: urine for excretion; tissues for biodistribution

- Chromatography vs. Ligand Binding
  - Perception
    - hLBA, hLC-FLD or hLC-MS more sensitive
    - LC-Mass Spec more specific
  - Reality
    - Mostly based on historical data & 'comfort'
    - Whatever works, driven by
      - Potential non-specific binding
      - Metabolism
        - Nucleases (exo/endo) vs. oxidative deamination vs. glycosidases
      - Sensitivity
        - Tissue concentration usually high
      - Transferability from plasma to excreta and tissues
      - LC-MS challenges: Formation of cation adducts can severely reduce the signal of the ion of interest and decrease the sensitivity of the assay

- Immuno pulldown (with antibody to protein/antibody)
  - Protease digestion
  - Quantitation of signature peptide reflective of the 'total' Protein/Antibody
    - Typical reverse phase workflow
  - Quantitation of *oligonucleotides* reflective of the original POC
    - Typical ion-exchange / ion-pairing workflow
- Immuno pulldown (with complementary strand/antibody to oligonucleotides)
  - Protease digestion
  - Quantitation of *oligonucleotides* reflective of the original POC and 'free' oligonucleotides
    - Typical ion-exchange / ion-pairing workflow





ASO (from an AOC) Quantitation by LC-MS/MS

EXAMPLE: TIC OF ANTI-SENSE STRAND & STAND CURVE IN HUMAN URINE (LLOQ @ 2 NG/ML)



### ASO (from an AOC) Quantitation by LC-MS/MS

EXAMPLE: BACK-CALCULATED CONCENTRATIONS (NG/ML) & INTRADAY PRECISIONS & ACCURACY

| Run Date        | Run No. | 2.00  | 4.00  | 20.0 | 60.0 | 200  | 600  | 1800 | 2000 |
|-----------------|---------|-------|-------|------|------|------|------|------|------|
| XX-XXX-<br>XXXX | 2ª      | 2.02  | 3.76  | 20.8 | 62.1 | 201  | 625  | 1860 | 2110 |
|                 |         | 2.06  | 3.96  | 19.5 | 54.6 | 198  | 593  | 1790 | 1940 |
| XX-XXX-<br>XXXX | 3ª      | 2.13  | 3.24  | 23.9 | 53.0 | 235  | 526  | 1580 | 1800 |
|                 |         | 2.15  | 3.28  | 25.5 | 56.8 | 250  | 586  | 1640 | 1930 |
| XX-XXX-<br>XXXX | 4       | 2.04  | 4.07  | 19.0 | 57.8 | 196  | 587  | 1800 | 1980 |
|                 |         | 1.93  | 4.11  | 20.3 | 58.5 | 202  | 603  | 1900 | 2100 |
| XX-XXX-<br>XXXX | 6       | 1.86  | 3.79  | 19.6 | 59.9 | 192  | 588  | 1720 | 2000 |
|                 |         | 2.14  | 4.13  | 22.0 | 64.9 | 199  | 563  | 1860 | 2000 |
| XX-XXX-<br>XXXX | 7       | 1.93  | 3.58  | 19.1 | 60.8 | 207  | 597  | 1800 | 1900 |
|                 |         | 2.14  | 4.16  | 20.8 | 59.8 | 200  | 611  | 1840 | 2010 |
| Mean            |         | 2.01  | 3.97  | 20.1 | 60.3 | 199  | 592  | 1820 | 2000 |
| S.D.            |         | 0.118 | 0.235 | 1.15 | 2.50 | 5.13 | 16.7 | 62.0 | 64.0 |
| %CV             |         | 5.9   | 5.9   | 5.7  | 4.1  | 2.6  | 2.8  | 3.4  | 3.2  |
| %RE             |         | 0.5   | -0.8  | 0.5  | 0.5  | -0.5 | -1.3 | 1.1  | 0.0  |
| n               |         | 6     | 6     | 6    | 6    | 6    | 6    | 6    | 6    |

| Pup Date       | Pup No    | 2.00    | 6.00    | 80.0    | 800     | 1600    |
|----------------|-----------|---------|---------|---------|---------|---------|
| Run Date       | ixuil NO. | (ng/mL) | (ng/mL) | (ng/mL) | (ng/mL) | (ng/mL) |
| xx-xxx-xxxx    | 4         | 2.03    | 5.71    | 73.5    | 775     | 1530    |
|                |           | 1.81    | 5.68    | 78.4    | 770     | 1520    |
|                |           | 2.34    | 5.75    | 73.8    | 771     | 1490    |
|                |           | 1.83    | 5.67    | 84.7    | 744     | 1550    |
|                |           | 1.76    | 5.45    | 74.5    | 775     | 1560    |
|                |           | 2.08    | 5.54    | 75.8    | 741     | 1510    |
| Intra-run Mean |           | 1.98    | 5.63    | 76.8    | 763     | 1530    |
| S.D.           |           | 0.220   | 0.114   | 4.27    | 15.8    | 25.8    |
| %CV            |           | 11.1    | 2.0     | 5.6     | 2.1     | 1.7     |
| %RE            |           | -1.0    | -6.2    | -4.0    | -4.6    | -4.4    |
| n              |           | 6       | 6       | 6       | 6       | 6       |

<sup>a</sup> Rejected run, not included in statistical calculations

Note: No regression performed in Runs 1 and 5

## siRNA Quantitation by LC-QToF-MS

EXAMPLE: OLIGONUCLEOTIDES NEGATIVE ESI MASS SPECTRUM SHOWING AS<sup>3-</sup> (PARENT, N-1, N-2)



## siRNA Quantitation by LC-QToF-MS

EXAMPLE: TIC AND CORRESPONDING MASS SPECTRA OF ANTI-SENSE, AS (N-1), AND SENSE STRANDS IN HUMAN PLASMA











© 2023 QPS. Confidential. All rights reserved.

#### siRNA Quantitation by LC-QToF-MS

EXAMPLE: STANDARD CURVES OF ANTI-SENSE, AS (N-1), AS (N-2), AND SENSE STRANDS IN HUMAN PLASMA (LLOQ @ 5 NG/ML AND 1 NG/ML)

| Run<br>Date                                          | Run ID | A           | В           | с            | R-Squared | Regression<br>Footnote(s) |
|------------------------------------------------------|--------|-------------|-------------|--------------|-----------|---------------------------|
| Day 1                                                | 36     | -0.00000006 | 0.003819670 | -0.011560698 | 0.9951    | 1                         |
| Day 2                                                | 30     | -0.00000012 | 0.004052494 | -0.009053454 | 0.9966    | 1                         |
| Day 3                                                | 34     | -0.00000014 | 0.003581962 | -0.002954172 | 0.9969    | 1                         |
| Day 4                                                | 37     | -0.00000030 | 0.004465860 | 0.000321158  | 0.9924    | 1                         |
| Day 5                                                | 38     | -0.00000016 | 0.003670701 | -0.004392901 | 0.9926    | 1                         |
| Quadratic Regression with 1/x <sup>2</sup> Weighting |        |             |             |              |           |                           |
| Regression Footnote(s):                              |        |             |             |              |           |                           |
| 1) Resp. = A * (Conc. **2) + B * Conc. + C           |        |             |             |              |           |                           |

| Run<br>Date                                          | Run ID | A           | В           | с            | R-Squared | Regression<br>Footnote(s) |
|------------------------------------------------------|--------|-------------|-------------|--------------|-----------|---------------------------|
| Day 1                                                | 36     | -0.00000104 | 0.010317655 | -0.005277962 | 0.9922    | 1                         |
| Day 2                                                | 30     | -0.00000044 | 0.009893031 | -0.003624263 | 0.9963    | 1                         |
| Day 3                                                | 34     | -0.00000208 | 0.010450719 | -0.002749375 | 0.9956    | 1                         |
| Day 4                                                | 37     | -0.00000165 | 0.007991487 | 0.004228573  | 0.9935    | 1                         |
| Day 5                                                | 38     | -0.00000313 | 0.012476897 | -0.002909850 | 0.9922    | 1                         |
| Quadratic Regression with 1/x <sup>2</sup> Weighting |        |             |             |              |           |                           |
| Regression Footnote(s):                              |        |             |             |              |           |                           |
| 1) Resp. = A * (Conc.**2) + B * Conc. + C            |        |             |             |              |           |                           |

| Run                                                 | 0     | A           | в           | C            | R-Squared | Regressio |  |
|-----------------------------------------------------|-------|-------------|-------------|--------------|-----------|-----------|--|
| Date                                                | Kunio |             |             |              |           | Footnote  |  |
| Day 1                                               | 36    | -0.00000157 | 0.012459182 | -0.007111476 | 0.9933    | 1         |  |
| Day 2                                               | 30    | -0.00000157 | 0.011743405 | -0.004886467 | 0.9912    | 1         |  |
| Day 3                                               | 34    | -0.00000395 | 0.012705437 | -0.002720330 | 0.9959    | 1         |  |
| Day 4                                               | 37    | -0.00000329 | 0.011105167 | -0.002518838 | 0.9942    | 1         |  |
| Day 5                                               | 38    | -0.00000415 | 0.014417882 | -0.005261136 | 0.9948    | 1         |  |
| uadratic Regression with 1/x <sup>2</sup> Weighting |       |             |             |              |           |           |  |
| egression Footnote(s):                              |       |             |             |              |           |           |  |
| Resp. = A * (Conc.**2) + B * Conc. + C              |       |             |             |              |           |           |  |

| Run<br>Date                                          | Run ID | A           | В           | с            | R-Squared | Regression<br>Footnote(s) |
|------------------------------------------------------|--------|-------------|-------------|--------------|-----------|---------------------------|
| Day 1                                                | 36     | -0.00000014 | 0.004085952 | -0.007317355 | 0.9919    | 1                         |
| Day 2                                                | 30     | -0.00000025 | 0.004474451 | -0.003289805 | 0.9950    | 1                         |
| Day 3                                                | 34     | -0.0000025  | 0.003762272 | -0.003002574 | 0.9934    | 1                         |
| Day 4                                                | 37     | -0.00000042 | 0.007331024 | 0.021793958  | 0.9923    | 1                         |
| Day 5                                                | 38     | -0.00000159 | 0.004356572 | -0.004794018 | 0.9964    | 1                         |
| Quadratic Regression with 1/x <sup>2</sup> Weighting |        |             |             |              |           |                           |
| Regression Footnote(s):                              |        |             |             |              |           |                           |
| 1) Resp. = A * (Conc.**2) + B * Conc. + C            |        |             |             |              |           |                           |





### Oligonucleotides Quantitation by LC-HRMS

PLASMA CONCENTRATION IN NHP FOLLOWING SC ADMINISTRATION OF 30, 100, AND 300 MG/KG DOSE





### Oligonucleotides Quantitation by LC-HRMS

MEAN LIVER CONCENTRATION IN NHP FOLLOWING SC ADMINISTRATION OF 10 MG/KG DOSE



© 2023 QPS. Confidential. All rights reserved.

#### Oligonucleotides Quantitation by LC-HRMS

MEAN PLASMA CONCENTRATION IN NHP SHOWING REPRODUCIBILITY OVER A PERIOD OF 3 YEARS



PROCEDURE: LC-MS (HRMS OR MS/MS) METHOD

- Calibration Curve
  - Standalone curve *vs.* Standalone curve: depends on the purpose and matrix availability
  - Part of method development process; whatever matrix that provide the best surrogate curve
- Sample Preparation
  - Feces and tissues need homogenization followed by lysis
  - Extraction: Recovery:  $\geq 70\% \leftrightarrow \leq 95\%$
- Chromatography
  - Run-time usually ≤5 min injection-to-injection
  - Column
    - C18 2.1 mm x 50 mm 1.7 μm 130Å fully porous
    - Column life: 300 400 injections
    - 300Å for specific applications, e.g., AOC / POC

- Mass Spectrometry
  - IS: Analogue or Stable Isotopically Labeled
    - Analyte AS & S & analogue AS & S
    - Cation adducts:
      - $H_n Na_0 K_0 \rightarrow H_{n-1} Na_1 K_0$ ;  $H_{n-1} Na_0 K_1 \rightarrow H_{n-2} Na_2 K_0$ ;  $H_{n-2} Na_1 K_1$ ;  $H_{n-2} Na_0 K_2 \rightarrow \dots$
    - Analogue IS: Potential overlapping isotopic mass
    - SIL-IS: expensive, control isotopic overlap?
  - Mass Resolution (Theoretic vs. Operating)
    - Triple Quad (unit resolution)
    - QTOF (uniform resolution; ~40K) vs. Ion trap (mass dependent; ≥120K @ 200 amu)
    - UPLC peak width @ 3-6 seconds; with 12+ data-point operating resolution @~35K



PROCEDURE: LC-MS (HRMS OR MS/MS) METHOD

- Tripe Quadrupoles vs. QTOF
  - -ve ion mode
  - Assay range: 3 order
  - LC-MS/MS (similar to peptides MS/MS)
    - Q1 (@ higher charge envelope, e.g.,  $M^{9-}$ )  $\rightarrow$  Q3 (@ lower charge envelope, mostly <400 m/z)
  - Full scan LC-HRMS
    - Quan and Qual
    - Sum multiple isotopic mass @ lower charge state, e.g., M<sup>4-</sup> and M<sup>3-</sup>
  - Data Intensity: two 96-well plates: 2MB vs. 3 GB
  - LLOQ:
    - $\leq 2 ng/mL (QqQ) vs. \leq 5 ng/mL (HRMS)$ 
      - Stoichiometry: nM double strand ~ single strand
      - Stoichiometry: ng/mL double strand ≠ single strand
    - 100μL sample volume, 100μL recon, 3μL 5μL injection
    - Sub-1 ng/mL (if higher sample volume, lower recon, higher volume injection)

- Why choose Tripe Quadrupoles
  - Well known/established metabolites (per MIST guidance)
  - Analogue or SIL IS has little or no to cross-talk
  - Desired LLOQ @ sub-1 ng/mL
- Why choose QTOF
  - No metabolism data available
  - Analogue or SIL IS potential cross-talk
  - Desired LLOQ @ 1 ng/mL
- Preliminary experiment
  - · Well-established historical metabolism data
  - *In vitro* metabolism (simple 'well-stirred' hepatic model *vs.* more complexed long-term co-culture model)
  - Confirm in vivo rat/NHP vs. in vitro metabolism data



### siRNA Quantitation by LC-QToF-MS: Power of LC-HRMS

EXAMPLE: RECONSTRUCTED XIC OF SIRNA IN PLASMA SAMPLES



#### siRNA Quantitation by LC-QToF-MS: Power of LC-HRMS

EXAMPLE: RECONSTRUCTED XIC OF SIRNA IN LIVER SAMPLES (METABOLISM VIA OXIDATIVE DEAMINATION)



- QPS Delaware, USA
  - Amelie Chen
  - Diane Grotz
  - Haotong Chen
  - Helen Shen
  - Imrana Salia
  - Jay Su
  - Jiyi Wang
  - Lakshmi Ramanathan
  - Lan Li
  - Lata Venkatarangan
  - Rick Hamler
  - Tim Snow
  - Vicki North
  - Yongdong Zhu
  - Zamas Lam
  - Zhihua Yang

- ▶ QPS Groningen, Netherlands
  - Andrea Fabara Carranco
  - Baubek Spanov
  - Benjamin Steenge
  - Eric van de Horst
  - Francisco Bonardi