

Challenges of LC-MS/MS method development for the quantitation of a polar low molecular weight biomarker in biological fluids

Bryan Parmentier, Peter Kelsey, <u>Mouhssin Oufir</u> and John Perkins

KCQS

Agenda

- Introduction to small molecule biomarkers
- Challenges with LC-MS/MS assay development for urea
- Experimental optimization & final conditions
- Validation Data
- Conclusions

LC-MS/MS Challenges of Low Molecular Weight Analytes

Factors affecting quantitation of low molecular weight analytes (<100 Da) in biological matrices

- Few chemical groups within molecule
 - Limited number of options for product ions
 - Product ion transitions are in turn likely to be simple and non-specific.
- High background & chromatographic interferences from ions from matrix and environmental contaminants
- Can lead to high baseline in low molecular weight analyte assays (Potential LLOQ impact)
 - Methanol M_r = 32.04 Da
 - Acetonitrile M_r = 41.05 Da
 - Formic Acid M_r = 46.03 Da
 - Acetic Acid M_r = 60.05 Da

· · ·		. ,		1					
Monoisotopic ion mass (singly charged)	lon type	Formula for M or subunit or sequence	Compound ID or species	Possible origin and other comments					
33,033491	$[M+H]^{+}$	CH3OH	Methanol	Acetonitrile, solvent					
42,033825	$[M+H]^{+}$	CH₃CN	Acetonitrile	Acetonitrile, solvent					
59,060374	$[M+NH4]^{+}$	CH₃CN	Acetonitrile	Acetonitrile, solvent					
63,044056	$[A_1B+H]^+$	[C2H4O]nH2O	PEG	Polyethylene glycol, ubiquitous polyether					
64,015769	[M+Na]⁺	CH ₃ CN	Acetonitrile	Acetonitrile, solvent					
65,059706	$[M_2+H]^+$	CH ₃ OH	Methanol	Methanol, solvent					

*Keller, B.O.; Sui, J.; Young, A.B.; Whittal, R.M. Interferences and contaminants encountered in modern mass spectrometry (Analytica Chimica Acta (Review/tutorial, Special Issue on Mass Spectrometry), 2008)

Biomarker Analysis using LC-MS/MS

- Fundamental issue is that biomarkers typically have an endogenous presence
- Simple spiking of standards into biological matrices to make calibration curves may not always be feasible.
- Assessment of different approaches for small molecule biomarkers
 - Standard addition to baseline endogenous concentration
 - Use of stable labeled heavy (surrogate) standards for the analyte of interest.
 - Use of an alternative interference-free matrix (surrogate) for calibration standards preparation.
 - Core assay standards and QCs are typically made in the surrogate along with QC samples prepared in the actual matrix to mimic study samples.
 - Development includes the assessment of parallelism between candidate surrogates and true matrix to determine best choice.

Urea as a Target Biomarker

- Low molecular weight (M_r = 60.06 Da)
 - Rapid and uniform diffusion across the peripheral blood and epithelial lining.
 - Urea diffuses freely throughout the body and is minimally affected by disease states

- Endogenous urea measurement in plasma often utilized as a control marker
 - Accounts for dilutions during sample collection or processing > dilution marker for volume normalization of biological matrices
 - Applicable when study includes samples from different matrices within the same project.
- In this case study, urea was surrogate for administered antibiotic (drug) with intracellular action. Measurements in plasma, BAL (BronchoAlveolar Lavage) & lung lining cells were used to normalize assessment of drug penetration

High endogenous urea concentrations (~ 275 µg/mL) in plasma, combined with its low molecular weight and highly polar properties, are significant barriers to simple LC-MS/MS approaches

Monitoring Potential Surrogate Matrices (Plasma)

Effect of dilution of the true matrix with surrogate based on accuracy of measurement for urea from the upper limit (ULOQ) to the lower limit (LLOQ) of the assay

Effect of Dilution in the Selected Surrogate Matrix

Accuracy of 300 µg/mL standard (ULOQ) across dilution range

Surrogate Matrix

9.375 μg/mL

10 g bovine serum albumin (BSA) in 140 mL phosphate buffered saline

Extraction Challenges

- Conventional protein precipitation with organic solvents initially assessed
- Hydrophilic nature prevents quantitative distribution into acetonitrile from more aqueous environment
- Low Sensitivity inability to hit requested LLOQ
- Methanol extraction showed low background but poor chromatographic performance (Loss of signal)

Optimized Urea Extraction

- Aliquot 100 μL calibration standard, QC or sample
 - Plasma or BSA/PBS (10 g/140 mL)
- Addition of stable-labeled internal standard (25 μL, 1 mg/mL in H₂O)
- Precipitation with 30% trichloroacetic acid TCA in water
- Vortex (15 minutes) & centrifuge samples (15 minutes)
- Transfer 25 µL aliquot to fresh tubes
- Dilution with acetonitrile (650 μL)
- Vortex (10 minutes)
- Transfer to chilled autosampler
- Injection (20 μL) onto UHPLC system

Integra Viaflo 96

Chromatographic Optimization – Reversed Phase

- Reversed phase chromatography proved unsuccessful
- Limited retention
- Background Interference & Ion suppression

KCOS

Chromatographic Optimization - HILIC

- Hydrophilic
 Interaction
 Chromatography
 (HILIC) Approach
- Analyte and IS well resolved from matrix components (k' ~ 5)
- Residual trichloroacetic acid from extraction aided analyte retention

MS Optimization: ESI vs APCI

LC-MS/MS Conditions

- Shimadzu LC-30 System
- Shimadzu SIL-30AC Autosampler at 4 °C
- Waters XBridge BEH Amide (100 x 2.1 mm) at 45 °C
- Gradient LC Conditions
- Mobile Phase A:- 10 mM Ammonium Acetate
 in Deionized water
- Mobile Phase B:- Acetonitrile
- Flow Rate 0.800 mL/min

- Retention Time
- Urea 1.62 min
- ¹³C, ¹⁵N₂ Urea 1.62 min

- SCIEX 6500+ QTRAP
- APCI in positive ion mode
- Q1 High Resolution, Q3 High Resolution
- Selected Reaction Monitoring (SRM)
- Urea m/z = 61.054 to m/z = 44.100
- ${}^{13}C$, ${}^{15}N_2$ Urea m/z = 64.035 to m/z = 46.000

Typical Calibration Curve (Surrogate Matrix)

Cal.Std.	Measured					
(µg/mL)	Concentration	%DEV				
10.0	10.0	0.0				
	9.97	-0.3				
20.0	20.0	0.0				
	19.9	-0.5				
40.0	40.0	0.0				
	40.4	1.0				
60.0	60.3	0.5				
	61.1	1.8				
120	117	-2.5				
	118	-1.7				
180	180	0.0				
	181	0.6				
240	237	-1.3				
	241	0.4				
300	298	-0.7				
	305	1.7				

Precision & Accuracy of QCs

Surrogate Matrix

QC Level	LLOQ QC	QC_L	QC_M	QC_H	
Conc. (µg/mL)	10.0	30.0	90.0	225	
A&P 1	10.3	31.9	91.6	235	
	10.8	32	92.5	233	
	10.2	31.1	94.4	235	
	11.6	32	90.2	234	
	10.1	31.9	91.3	231	
	10.5	31.6	91.9	239	
Mean	10.6	31.8	91.9	235	
%RSD	5.2	1.1	1.5	1.1	
%DEV	6.0	6.0	2.1	4.4	
A&P 2	11.8	32.6	94.5	244	
	11.1	33.0	96.1	243	
	11.0	32.5	97.2	240	
	11.1	32.6	97.3	241	
	11.2	33.0	96.3	249	
	11.5	32.1	97.9	246	
Mean	11.3	32.6	96.6	244	
%RSD	2.7	1.0	1.3	1.4	
%DEV	13.0	8.7	7.3	8.4	
A&P 3	9.77	29.5	89.4	231	
	9.75	30.0	90.3	232	
	10.2	29.5	90.8	229	
	10.3	29.9	89.4	230	
	9.97	30.5	90.4	231	
	10.1	29.8	90.1	230	
Mean	10.0	29.9	90.1	231	
%RSD	2.3	1.2	0.6	0.5	
%DEV	0.0	-0.3	0.1	2.7	
Mean (Inter)	10.6	31.4	92.9	236	
%RSD (Inter)	6.1	3.9	3.2	2.6	
%DEV (Inter)	6.0	4.7	3.2	4.9	

Plasma QC_L QC_L QC_M QC_M QC_H QC_H QC Level Conc. (µg/mL) 36 60.6 152 180 291 303 A&P 1 35.2 182 292 36.8 180 291 35.0 177 292 35.7 180 302 36.7 183 290 35.4 179 297 35.8 180 294 Mean %RSD 2.2 1.2 1.6 %DEV -0.6 0.0 1.0 A&P 2 58.8 153 303 304 59.5 152 60.2 153 304 303 61.2 151 60.4 151 299 60.3 153 305 Mean 60.1 152 303 %RSD 1.4 0.6 0.7 %DEV -0.8 0.0 0.0 A&P 3 56.5 142 281 286 56.9 142 57.6 140 284 288 57.8 143 57.4 143 280 56.7 143 289 57.2 142 285 Mean %RSD 0.9 0.8 1.3 %DE\ -6.6 -5.9 -5.6 58.6 147 294 Mean (Inter %RSD (Inter) 2.8 3.6 3.4 %DEV (Inter) -3.3 -3.3 -3.0 12 12 12

Plasma dilution with surrogate matrix

QC Level (µg/mL)	300	1010	2670		
Dilution	2x	5x	10x		
	303	1040	2680		
	302	1020	2550		
	300	1030	2600		
	302	1060	2760		
	304	1050	2590		
	301	1050	2670		
Mean	302	1040	2640		
%RSD	0.5	1.4	2.9		
%DEV	-0.3	3	-1.1		

Method Development in BAL Supernatant & Cells

- Sourcing of true matrix difficult so challenges primarily logistical
 - Limited suppliers
 - Cell harvesting challenging
- Bovine serum albumin (BSA) in 140 mL phosphate buffered saline surrogate matrix not applicable to BAL & cell matrix
- Saline (0.9% NaCl in water) used as a surrogate because BAL fluid is mostly a collection of saline.
- Downstream analytical conditions consistent with plasma approach

Analytical Performance in Human Bronchoalveolar Lavage (BAL)

Surrogate Matrix (0.9% Saline)

BAL Fluid

	Curve	QCS 0.75	%Bias	QCS 2.25	%Bias	QCS 9	%Bias	QCS 22.5	%Bias		Curve	True QCS low	%Bias	True QCS mid	%Bias	True QCS high	%Bias
	Number	0.750 μg/mL		2.25 μg/mL		9.00 μg/mL		22.5 μg/mL			Number	160 μg/mL		170 μg/mL		173 μg/mL	
	A&P 1	#0.923	23.1	1.98	-12.0	8.62	-4.2	23.4	4.0		A&P 1	167	4.4	179	5.3	167	-3.5
		0.898	19.7	1.96	-12.9	9.26	2.9	23.0	2.2			159	-0.6	178	4.7	180	4.0
		0.873	16.4	##1.85	-17.8	9.22	2.4	23.9	6.2			150	-6.3	175	2.9	184	б.4
		0.827	10.3	2.07	-8.0	9.03	0.3	23.0	2.2			169	5.6	171	0.6	169	-2.3
		0.896	19.5	2.01	-10.7	9.04	0.4	23.2	3.1			156	-2.5	156	-8.2	181	4.6
		0.840	12.0	##1.83	-18.7	8.83	-1.9	23.4	4.0			157	-1.9	161	-5.3	159	-8.1
	A&P 2	0.792	5.6	2.10	-6.7	9.12	1.3	22.9	1.8		A&P 2	143	-10.6	152	-10.6	160	-7.5
		0.747	-0.4	2.26	0.4	8.72	-3.1	23.5	4.4			147	-8.1	157	-7.6	158	-8.7
		0.735	-2.0	2.14	-4.9	9.12	1.3	22.8	1.3			162	1.3	155	-8.8	163	-5.8
		0.742	-1.1	2.27	0.9	8.95	-0.6	22.9	1.8			147	-8.1	163	-4.1	##145	-16.2
		0.806	7.5	2.23	-0.9	9.16	1.8	23.4	4.0			154	-3.8	163	-4.1	162	-6.4
		#1.01	34.7	2.11	-6.2	9.14	1.6	22.9	1.8			147	-8.1	165	-2.9	154	-11.0
	A&P 3	0.709	-5.5	2.28	1.3	8.76	-2.7	22.7	0.9		A&P 3	157	-1.9	163	-4.1	157	-9.2
		0.774	3.2	2.22	-1.3	9.34	3.8	22.9	1.8			152	-5.0	164	-3.5	160	-7.5
		0.765	2.0	2.23	-0.9	9.15	1.7	22.2	-1.3			161	0.6	168	-1.2	159	-8.1
		0.781	4.1	2.14	-4.9	8.93	-0.8	23.6	4.9			156	-2.5	167	-1.8	168	-2.9
		0.745	-0.7	2.17	-3.6	9.17	1.9	23.0	2.2			152	-5.0	161	-5.3	152	-12.1
		0.752	0.3	2.26	0.4	9.03	0.3	23.2	3.1			149	-6.9	158	-7.1	162	-6.4
Mean Concentration (ug/mL)		0.812		2.12		9.03		23.1		Mean Concentration (µg/mL)		155		164		163	
Inter-run SD		0.0803		0.142		0.197		0.390		Inter-run SD		7.14		7.71		10.2	
Inter-run %CV		9.9		6.7		2.2		1.7		Inter-run %CV		4.6		4.7		6.3	
Inter-run %Bias		8.3		-5.8		0.3		2.7		Inter-run %Bias		-3.1		-3.5		-5.8	
n		18		18		18		18		n		18		18		18	
# > 20%Bias										# > 20%Bias							
##>15%Bias										## > 15%Bias							

Conclusions

- Small molecule biomarkers can be challenging analytes due to potential for interference
- Polar nature of urea meant usually adopted approaches for extraction, chromatography and mass spectrometry needed careful optimization
- High throughput assay for the direct measurement of urea was successfully validated and used to support analysis of plasma & bronchoalveolar lavage samples from a clinical study
- Routine analysis is possible but regular instrument cleaning is essential due to build up of matrix interference.

- This project has been funded by the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) through a Phase 1 Clinical Trial Units for Therapeutics program award to DynPort Vaccine Company, LLC (Contract No. HHSN272201500005I) for bioanalysis of clinical samples at KCAS, Inc.
- Disclaimer: This talk reflects the views of the authors and should not be construed to represent NIAID's views or policies.

Thanks for your attention

Questions?

kcasbio.com