

CRISPR and Applications of Genome Editing: Bioanalytical Strategies & Challenges

Dr Neil Henderson, Associate Director, Discovery BioAnalysis Europe, Integrated Bioanalysis, CPSS, AstraZeneca Gothenburg

Outline

Introduction to CRISPR

Role of bioanalysis & the BioA toolbox

Cas9 Discovery bioanalysis

5

6

Quantification of gRNA & mRNA

Immune measurements

Closing thoughts

What is so important about CRISPR and Genome Editing?

"[CRISPR] is a technology that has exciting implications for clinical use, [particularly for cancer therapeutics]" Jennifer A. Doudna, PhD

What is CRISPR and Genome Editing?

Moving CRISPR from bench to bedside

Complexity of CRISPR

Active RNP complex is made up of sgRNA plus CAS9 protein

Edit not guaranted

Active RNP complex will bind & release from target DNA until a misrepair occurs

On- and Off-target

Editing has potential to occur in non-target regions

Context of Use

Approaches can either be ex vivo or in vivo

CAS9 origin

Complexity of CRISPR

CO

8

tai

m

Takes two to tango 👘 Ec

Active RNP complex is made up of sgRNA plus CAS9 protein

What is our BioA toolbox?

How can it help us to unravel this complexity to develop safe & effective CRISPR drugs?

ext of Use

aches can be ex vivo in vivo

CAS9 origin

Answering the complexity of CRISPR

Takes two to tango

Active RNP complex is made up of sgRNA plus CAS9 protein

Target DNA Web Cas9 + gRMA Cas9 + gRMA Cas9 + gRMA Release

Edit not guaranted

Active RNP

complex will bind

& release from

target DNA until a

misrepair occurs

Editing has potential to occur in non-target regions

Context of Use

Approaches can either be ex vivo or in vivo

CAS9 origin

Role of Bioanalysis in CRISPR drug development

Dosing

Which delivery approach is best & does it stay at site of action?

Temporal relationship

X + Y = (XY)t = E:e = TP = TO

Therapeutic window

What are the safety related issues & severity?

Understanding of the pharmacokinetics of the RNP components will facilitate Dose Setting and Optimal Safety Profiles

The BioA toolbox required to support gene editing projects

A mix of classical and novel bioA approaches will need to be used

Evolving bioanalytical strategies for quantification of CRISPR components

Cas9 protein

LBA

LC/MS

sgRNA / mRNA

Branched-DNA (bDNA)

qPCR

Immune response LBA Flow cytometry Elispot/fluorospot

Evolving bioanalytical strategies for quantification of CRISPR components

Cas9 protein LBA

LC/MS

sgRNA / mRNA Branched-DNA (bDNA) qPCR

Immune response LBA Flow cytometry Elispot/fluorospot

Measuring CAS 9 protein

Types of Cas9 proteins

Two predominantly used Cas proteins are SaCas9 (staphylococcus aureus) and SpCas9 (streptococcus pyrenes)

Developing assays

Right technology, right reagents, right sample processing, right performance Is it answering the right question?

14

Need for flexible BioA approaches

	MSD N/N-term assay	IA/LCMS
Measures	saCas9 N-terminal region	"intact" saCas9 (N/C terminus)
Assay range in mouse brain	0.018-1.11 ng/mg tissue (Matrix-matched)	0.087-11.1 ng/mL tissue (Matrix-matched)
Neat sample amount	5 μL homogenate	50 μL homogenate
Time	1 day	~2 days

Fit for purpose assays

Using the available tools in the toolbox to develop SaCas9 protein PK methods

Creative solutions

Factors such as reagent availability steers innovation in the toolbox

Future thinking

How to improve upon the assays developed?

SaCas9 methods developed by Mikko Holtta

Evolving bioanalytical strategies for quantification of CRISPR components

Branched DNA (bDNA)

works by amplifying the signal intensity of a captured analyte

Sample

bDNA can work on non-purified samples; a purified sample is often required/prefered for qRT-PCR workflows

bDNA assay

Assay

Specialist equipment to run assay is an incubator and a luminometer

qRT-PCR

works by amplifying copy

number of target in a sample

using specific probes

Performance

Assay can perform with acceptable precision (<20%) and bias (<30%)p to 640 pg/mL

High probe specificity

Bespoke probes cover the entire analyte

sgRNA measurable

bDNA can be used to measure sgRNA but is more suited to mRNA measurement

18

Incubate plate containing sample with capture, block and Z-extender probes 55°C: 16-20 hr overnight Wash plate 3x Incubate plate with Pre-Amplification probe 55°C; 60-90 min Wash plate 3x Incubate plate with Amplification probe 55°C: 60-90 min Wash plate 3x Incubate plate with Label probe . 50°C; 60-90 min Wash plate 3x Incubate plate with substrate Room temperature; 10-30 min Read Luminescence Analyse data

bDNA assay

Failed batches

A number of "performancefailed" runs (>30% A&P), yet samples consistent.

Temperamental assay

Assay can be problematic. Only suitable for discovery BioA

Format flexibility

bDNA is only available from a single vendor and the workflow has minimal wiggle room for refinement

	Advantage	Challenge
Branched DNA (singleplex)	 No requirement for purification of sample 	 Probe design (analyte specificity) Sample throughput
qRT-PCR	 Greater sensitivity* Less material required 	 Probe design (analyte specificity) Background

bDNA vs qRT-PCR

Head to head comparrison

qRT-PCR

Currently being used in discovery bioanalysis to measure CAS-9 mRNA, sgRNA and target edit mRNA

Evolving bioanalytical strategies for quantification of CRISPR components

LC/MS

sgRNA / mRNA Branched-DNA (bDNA) qPCR

Immune response LBA Flow cytometry Elispot/fluorospot

Measuring immune activation

Fig. 1: Identification of preexisting humoral immunity to Cas9.

From: Identification of preexisting adaptive immunity to Cas9 proteins in human

Preexisting immunity

Many individuals have antibodies against Cas9 protein

Delivery systems

AAVs and LNPs also induce immune activation (e.g., cytokines, anti-PEG ADAs)

Identifying safety profiles

Understanding how individuals respond to drug:delivery components may facilitate deployment

22

Methods for the measurement of immunogenicity and immune response activation

	FluoroSpot	Flow cytometry	Immunoassay
ANALYTES	Secreted	Cell surface or intracellular	Secreted or cell associated
SAMPLE TYPE	Cells	Cells	Medium or tissue extract
SAMPLE SIZE	Low ~10^5 cells per well	Medium ~10^6 cells per sample	Low to high, assay dependent
SENSITIVITY	Very sensitive single positive cell detected	Sensitive	Sensitive, assay dependent
QUANTITATIVE	Positive cell frequency and analyte abundance	Positive cell frequency and analyte abundance	Analyte concentration
MULTIPLEXING	Yes, easy, up to 4 analytes	Yes, but larger panels require more optimization	Possible, assay dependent
KINETICS	Independent sum of all events throughout stimulation	Dependent phenotype at given moment	Dependent affected by autocrine/paracrine signalling, protease processing
HIGH-THROUGHPUT	Yes, easy	Possible, but difficult	Yes, easy

Exploring new approaches to answer questions differently

Immune reaction

Historically greater focus has been placed upon whole-matrix cytokine profiles from dosed subjects

Increased granularity

Using Fluorospot to capture immune reaction differences between drug:delivery components on in vitro or ex vivo stimulated cells

Does more granularity on immune reactions lead to better drug design?

Answering the complexity of CRISPR

Takes two to tango

Active RNP complex is made up of sgRNA plus CAS9 protein

Edit not guaranted

Active RNP complex will bind & release from target DNA until a misrepair occurs

On- and Off-target

Editing has

potential to occur

in non-target

regions

Context of Use

Approaches can either be ex vivo or in vivo

CAS9 origin

CRISPR bioA summary

CRISPR technology offers us an opportunity to treat disease that are dependent on a single point mutations The Bioanalytical toolbox consists of classical and novel techniques Fit for purpose discovery approaches are needed for multiple component understanding

What adds value to progressing molecules will depend upon project-bespoke factors

Acknowledgements

Anna Marzeda Jakob Alhede Johnny Lindqvist Åsa Sandelius Liselotte Björsson Amanda Wilson Mikko Hölttä Stefanie Krambeck Roberto Nitsch Craig Stovold

Do not use layouts in this section appearing after this point.

Delivering CRISPR-Cas9 RNP complex into a cell

Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com