Hybrid extraction versus physicochemical methods for large peptides: some comparative data and observations

16th EBF Open Symposium16th November 2023Michael Blackburn

2009 – 2020 Insulin Hybrid LCMS Assay Immuno-affinity columns and MSIA tips

- Automated immuno-extraction procedure
 using capture antibody
- Better throughput and more consistent recovery than original manual 'column' method

- A hybrid assay combining ligand binding and MS
- Applied to clinical studies for several clients

Late 2020 – to date: Physicochemical method

Molecule to cure. Fast."

- From late 2020: MSIA columns no longer in production
- No alternative, needed to replace with a more robust process:
 - Options: Magnetic beads/Ab, or SPE
 - Previous experience with insulins and SPE
- 2020 21 we developed a new method based on physicochemical techniques and 2D LC-MS/MS

Aims : Hybrid vs SPE Comparison

Develop a method for human insulin using SPE (physicochemical) techniques Analyse volunteer samples using this new method and compare the data with that from MSIA (hybrid LC-MS)

Molecule to cure. Fast.™

Aims: Hybrid vs SPE Comparison

Develop a method for human insulin using SPE (physicochemical) techniques Analyse volunteer samples using this new method and compare the data with that from MSIA (hybrid LC-MS)

Do the two techniques give the same result for the same sample? Is there a systematic error or bias?

Mass Spectrometry Method

'top down' of intact clusters. Select specific product ion

Human Insulin assay Design

For analogue assays in human, we can simply spike control human plasma with the analogue

Endogenous Human insulin: cannot use same matrix for calibration.

Match with a surrogate matrix: we have chosen pig plasma Method sample volume is 300 μL

Fed versus Fasted: original test

"The protein concentration is not a meaningful result, unless it is defined which molecular property the method responds to."

Van der Merbel, European Bioanalytical Forum 2017

FREE vs. ACTIVE (target binding) vs. TOTAL

MSIATM extracts target binding insulins, with a capturing epitope on the mid-point of B chain. To measure TOTAL, crash plasma first & dilute

To prevent non specific binding in the well plate, use a carrier peptide e.g ACTH fragment, leucine enkephalin

Mean fasted and fed (n=6) concentrations of endogenous insulin in 5 healthy volunteers. Values in blue are fasted, red are following a meal.

Calibration Lines Comparison

Fed and fasted volunteers MSIA versus SPE

All Concentrations pg/mL

Sample	MSIA	SPE	
Subject 1 fasted	390	389	
Subject 1 fed	1630	1710	
Subject 2 fasted	815	941	
Subject 2 fed	248	288	
Subject 3 fasted*	300	383	
Subject 4 fasted	89.6	97.7	
Subject 4 fed	923	957	
Subject 5 fasted	292	278	
Subject 5 fed	2090	2740	
Subject 6 fasted	845	1030	
Subject 6 fed	3880	3880	

*removed blocked MSIA Tip (3, fed)

Fed & Fasted Human Insulin MSIA versus SPE

MSIA SPE

Correlation of SPE versus MSIA

Scatter Chart MSIA vs SPE

Correlation of SPE versus MSIA

Average MSIA value	Average SPE value
1046	1154
-	+ 10.3%

Acceptance Criteria Inconsistency

2 methods generating equivalent data, same PK endpoint but different acceptance.

Reference: Immunocapture LC/MS(/MS) assays for biotherapeutic and biomarker proteins – the European Bioanalysis Forum continuing discussions on scientific and regulatory challenges. Barfield et al., Bioanalysis Vol. 15 No 9. White Paper

High Mass Product lons for greater specificity

1140 1160 1180

Compound	Glargine	M1	M2	Lispro	Bovine IS
Hybrid	867>136	959>226	943>136	969>217	956>1121
	Tyr	<mark>By3-y1</mark>	Tyr	<mark>By2</mark>	*
SPE	867>984	959>1108	943>1098	969>217	956>1121
	<mark>A+y19B?</mark>	*	*	<mark>By2</mark>	*
	1011>1179				

Small product = high collision energy 35-50eV Large product = lower collision energy

925.2.929.1

•

Glargine Identity of high mass product ions: HR-MS

Accurate mass consistent with the loss of 9 water molecules

Bovine IS Identity of high mass product ions HR-MS

tentatively the precursor ion loses asparagine from the C-terminal position of the B-chain

Glargine M1 HR-MS No product assignment so far

Summary

Acknowledgements

Assay: Danny Horton, Janine Morsman, Stephen Gray Matrix: Miranda Wilkinson, Fiona Holden, six blood volunteers

THANK YOU FOR LISTENING!

