Metabolomics screening kits for use in clinical trials – fit for purpose?

- Heike Wiese -

Through the measurement of metabolites, a person's metabolic make-up can be profiled at any given moment, to understand and predict the impact of external influences.

Biocrates Kits – Targeted Metabolomics using LC-MS/MS

Ready to use kits including

- System suitability test samples
- Calibration standards
- Quality controls
- Internal standards
- Sample preparation plate
- Sample preparation protocol
- Instrument specific methods for Agilent, Sciex and Waters Triple Quads
- Software enabling sample registration and data analysis
- Chromatography columns

7 Kits available ranging from 17 steroids up to 1,019 metabolites from 39 biochemical classes

AbsoluteIDQ[®] Bile Acids and MxP[®] Quant 500 Kits Bile Acids

Biomarker CoU

Bile Acids Kit:

- 20 Bile Acids (16 human)
- Quantification via LC-MS/MS
- 7-point calibration curve for each analyte
- ISTD normalized

Quant 500 Kit:

- Coverage of 630 metabolites from 26 biochemical classes
- Quantification via LC- and FIA MS/MS, positive and negative polarity
- Different analytical qualities
- ISTD normalized

High percentage of analytes yield relative quantitative results

- Quantitative or relative quantitative
- → Reproducible values

- Able to identify concentration differences and trends between groups
- Pre-validated calibration and quantification ranges

Analytical classification	Abbreviation	Validation criteria
54 Quantitative	Q	 7-point calibration used CV < 15% (CV < 20% at LOD) accuracy 85 - 115% (accuracy 80 - 120% at LOD) corresponding ISTD used
		 FIA 1-point calibration used CV < 20% accuracy 80 - 120% corresponding ISTD used
51 Quantitative with restrictions	QR	 1-point calibration or CV < 20% at entire concentration range or accuracy 80 - 120% at entire concentration range
455 Relativo guantitativo	PO	LC - CV < 20% - accuracy not verified
Relative quantitative	κų	FIA - CV < 30% - accuracy not verified
Not validated 66	NV	 analyte concentration < LOD*
Invalid 4	IV	- validation failed

Intended context of use

Disease modulation biomarker (understanding the drug's mode of action), pharmacodynamic response biomarker regarding the liver, exploratory biomarker

FFP validation design

- A&P runs with 3 Kit QC level (lyophilized) + self-made QC (spiked plasma)
- Carry over

NUVISAN

- Stabilities: FT, BT with self-made QC, processed sample stability of all QCs
- Stability of analytes from isochronic samples

Acceptance criteria

according to biocrates kit specifications: Accuracy calibration samples ± 15 % Accuracy for QCs ± 30 % (± 45 % for QC 3)

Accuracy for self-made QCs: ± 25 % Carry-over: <20% of LLOQ

Self-made QC (A&P 3):

	CA	CDCA	DCA	GCA	GCDCA	GDCA	GLCA	GUDCA	LCA	TCA	TCDCA	TDCA	TLCA	TMCA(a+b)	TUDCA	UDCA
mean	151.5	139.8	182.5	237.5	1164.8	271.3		121.3	277.8	2197.7	131.0	33.7	203.2	937.0	732.8	1386.8
cv [%]	5.6	4.8	3.1	4.2	1.2	2.3		3.6	1.8	3.5	2.8	3.0	2.3	2.6	3.3	3.7
bias [%] to																
nominal	9.7	7.2	6.9	-4.5	5.1	12.5		6.9	-7.8	-0.9	6.1	6.6	10.4	-2.0	4.1	0.7

Kit QCs:

		CA	CDCA	DCA	GCA	GCDCA	GDCA	GLCA	GUDCA	LCA	TCA	TCDCA	TDCA	TLCA	TMCA(a+b)	TUDCA	UDCA
A&P 1	CV	5.2	2.6	3.0	5.2	2.8	5.4	7.7	4.4	6.7	2.6	2.8	3.9	2.9	1.8	4.3	4.0
	bias	-14.9	-27.0	-9.3	-12.9	-4.0	-11.3	-13.5	-6.8	-18.7	-10.1	-25.0	-2.8	-17.8	-10.4	-6.9	-14.6
A&P 2	cv [%]	8.0	2.2	3.5	2.9	4.0	2.3	3.7	3.2	5.3	4.7	5.5	3.7	5.3	1.3	2.3	5.8
	bias [%]	-15.5	-25.8	-1.6	-7.1	-12.4	-11.5	-11.0	-6.6	-16.8	-11.4	-25.9	-7.3	-18.7	-14.4	-12.2	-6.7
A&P 3	CV	4.3	4.9	2.2	3.5	3.2	4.9	2.3	4.2	3.6	2.4	5.0	4.9	4.6	3.5	5.0	11.6
	bias	2.5	-21.5	4.7	-2.9	8.7	-0.3	1.4	4.2	-3.0	-6.2	-19.7	5.2	-3.0	-6.6	-1.2	-6.4

Problem identified: QC reconstitution!

Benchtop stability: 48 h at RT

Freeze-thaw: 3 cycles

Processed sample stability: 36 h

Long-term stability (isochronic samples): up to 3 years at -20 & -75 °C

- ➔ Validation successful
- ➔ Identified problems: slight carry over not identified in system suitability test and insufficient QC reconstitution (improve reconstitution procedure)

Proper sample management Documentation SOPs – biocrates Processes Validated instruments/lab equipment Data analysis – software Data handling and post processing ? X QC checking Reporting

Data analysis software: WebIDQ

eate project	×
Active	
Project code	001
Project name	demo project
Description	here you can enter a description
Contacts	Heike Wiese ×
Project team	Lena Maier × Anna-Lena Birkert ×
	Cancel Save

🔗 LIMS 🛛 🔒 Quantification 🔟 Results

Delete measurements Export worklist to MS

Plate run	Run time ↑	OP type	OP	Plate prod	Plate valid
1052344946-1	2023-07-20 09:17:46	LCMS	BA02-0-5813		ОК

Data analysis software: WebIDQ

Plate run	1052344946-1
Run time	2023-07-20
OP	BA02-0-5813
Plate validation	ОК
Note	Ø

0

LOD configuration

The LOD was calculated using 1 zero sample.

Plate	view	

A1	A 2	A3	A4	A5	A6	A7	A 8	A9	A10	
B1		B 3	B 4	B 5	B6	B7	B 8	B9	B10	
C1		C 3	C4	C5	C6	C7	C 8	(9	C10	
D1		D3	D4	D5	D6		D8	D9	D10	
E1	E2	E3	E4	E5	E6		E8	E9	E10	
F1	F2	F3	F4	F5	F6		F8	F 9	F10	
G1	G2									
H1										

Retention time [min]

Results can be exported in excel or text format (csv, txt)

Client specific dta format?

Manual transformation prone to error - therefore requires 100 % QC check

Best way: validated scriptnew for every client and projectyou need a bioinformatician

How can results be included in the report, when you have 630 (or 1019) analytes for every sample and many samples?

Compromise so far:

Appendix 1: Sample information - detailed sample information Appendix 2: Data – subset of analytes per page

Very impractical:

Involves manual modification of the result file

Adds very high number of pages to the report (75 pages for small project with 50 samples)

- FFP Validation successful for Bile Acid Kit with good accuracy and precision
- FFP Validation for Quant 500 Kit ongoing
- Good quality data
- Challenges in data integrity and transfer
 - Does anyone use "omics" kits?
 - What level of quality check is applied?
 - Did anyone ever get feedback from authorities?

Let's discuss – any feedback welcome

Thank you BioA Neu-Ulm....

... and the people who turn science into Life Science:

Lena Maier

Anna-Lena Birkert

Anastasiia Shevchuk

QC & Reporting team

Dr. Manuel Kratzke and Stefan Ledinger from biocrates