

Let the Biology guide our choices

Case study : Decoding immunogenicity assay performance for reliable ADA data delivery

Jean-Christophe Genin - Large Molecule Bioanalytical Manager Regulated Bioanalysis & Biosample Operations (RBBO) Chapter

EBF OS | 15-November-2023 | confidentiality level

Table of contents

1. Background:Context

- 2. What we know from...
 - the Biology of our compound
 - the ADA assay validation
 - the analysis of clinical samples
 - combining all our learnings
- 3. Decoding our ADA assay to learn more
- 4. Conclusion

Background Context

Submission to HA

Table of contents

1. Background: Context

- 2. What we know from...
 - the Biology of our compound
 - the ADA assay validation
 - the analysis of clinical samples
 - combining all our learnings
- 3. Decoding our ADA assay to learn

more

4. Summary & Conclusion

The Biology of our compound

The Soluble Target is a dimer. In a bridging ADA assay format, it can be detected as an ADA positive sample, generating **false positive results**.

The ADA Assay Validation

Homogeneous Bridging Assay

Soluble Target interference Assessment

Drug interference Assessment

Validation Drug tolerance In presence of 100 ng/mL PC		Drug (ng/mL)				
		0	10000	> 20000		
	0		Pos	Pos		
Soluble target (ng/mL)	40	Pos	Pos	Pos		
	200	Pos	Pos	Pos		
	600	Pos	Pos	Pos		
	1000	Pos	Pos	Pos		
	5000	Pos	Pos	Pos		

Expected result

Interference

The ADA Assay Validation - Visualization

5000							
4800							
4600							
4400							
4200							
4000							
3800							
3600							
JE 3400							
1/g 3200							
2800							
2600							
b 2400							
2200 get							
0002 tar							
ag 1800							
0 1600							
1400							
1200							
1000							
800							
600							
400							
200							
0							
E	3LQ 10	1	00	1000	10000		
	Drug concentration (ng/mL)						

The analysis of Phase III clinical samples

Soluble Target levels between 20 to 1200 ng/mL

Combining our learnings

5000	
4800	ADA responses distribution based on their levels of drug and soluble target
4600	
4400	
4200	
4000	ADA Negative
3800	ADA Positive
3600	
3400	
3200	
3000	
2800	
2600	
2400	
2200	
2000	
1800	
1600	
1400	
1200	
1200	
1000	
800	
600	
400	
200	
0	1000 10000
BL	LQ Drug concentration (ng/mL)

Zone without target and drug interference

Zone with soluble target interference : False positive results

Zone with potential risk of soluble target interference: **Risk of False positive results**

Zone with potential risk of drug interference: **Risk of False negative results**

We have gathered some information, but there are still significant gaps

Combining our learnings

Defining what we don't know...

At sample level (4290 samples evaluated)

Only 44 % of ADA data reported are reliable

For 56% of ADA data reported, there is a risk of drug and/or target interference

Combining our learnings

Defining what we don't know...

At patient level (166 ADA profiles evaluated)

Only 45 % of tested patients have reliable ADA results

For 55% tested patients, we can't be sure of their ADA profiles

Combining our learnings : Conclusion

Health Authorities expressed concern over the potential risk of false negatives (due to drug interference) at low ADA levels, but no queries regarding soluble target interference risk. By combining our learnings, there is a huge uncertainty about real ADA incidence :

> 50% of treated patients have inconclusive ADA response, which could potentially impact the overall ADA data interpretation.

Nevertheless:

- The safety profile of the drug is comparable, irrespective of ADA status.
- Between 10-15% of patients demonstrate sustained loss of exposure.
- Clinical data demonstrate target engagement even in the ADA-affected population.

Our ADA Assay is only partially decoded What else can it teaches us ?

Table of contents

1. Background: Context

- 2. What we know from...
 - the Biology of our compound
 - the ADA assay validation
 - the analysis of clinical samples
 - combining all our learnings
- 3. Decoding our ADA assay to learn more
- 4. Summary & Conclusion

Identifying our gaps

Covering gaps

Additional soluble target interference assessment by combining drug/target concentration in the area of interest:

in abconce of PC		Drug levels (ng/mL)							
ווימטזפוו		0	200	500	1000	2000	5000	10000	
	0	X	X	X	X	Х	X	Х	
Soluble Target levels (ng/mL)	100	X	Х	X	X	Х	X	Х	
	200	X	Х	X	X	Х	X	Х	
	400	X	X	X	X	Х	X	Х	
	600	X	Х	X	X	X	X	Х	
	1000	X	X	X	X	X	X	Х	

Identifying our gaps

Covering gaps

Additional drug interference assessment by combining drug/target concentration in the area of interest:

In presence of		Drug levels (ng/mL)								
100 ng/	mL PC	0	20000	30000	40000	50000	60000	70000		
	0	Х	Х	X	Х	X	Х	Х		
Soluble	800	Х	Х	X	Х	X	Х	Х		
Target levels	900	Х	Х	X	Х	X	Х	Х		
(ng/mL)	1000	Х	Х	X	Х	X	Х	Х		
	1200	Х	Х	Х	Х	Х	Х	Х		

Data outcomes

• Determining the soluble target tolerance curve:

For each level of drug tested, the target tolerance level is calculated via the intercept method.

In absence of PC	Drug concentration (ng/mL)							
	0	200	500	1000	2000	5000	10000	
Soluble Target tolerance (ng/mL)	206	378	364	446	673	905	>1200	

Data outcomes

Soluble target tolerance curve

Data outcomes

• Determining the drug tolerance threshold:

In presence of	Soluble target concentration (ng/mL)						
100 ng/mL of PC	0	800	900	1000	1200		
Drug tolerance (ng/mL)	>70000	>70000	>70000	>70000	>70000		

Data outcomes

Drug tolerance threshold

For low level of ADA, potential risk of false negative results

Data reevaluation

True Positive n (%) 991 (23)	False Positive n (%) 118 (3)
(Risk of) False Negative n (%) 1 (0)	True Negative n (%) 3180 (74)

From 44 % to 97% reliable ADA data !

3% of samples analysed are in the "target interference" area

Data reevaluation

Table of contents

1. Background:Context

- 2. What we know from...
 - the Biology of our compound
 - the ADA assay validation
 - the analysis of clinical samples
 - combining all our learnings
- 3. Decoding our ADA assay to learn more
- 4. Summary & Conclusion

Summary : It's not always all about drug interference !

- Don't forget the soluble target when assessing your ADA assay performance (only if relevant)!
 - What is the biology of the soluble target?
 - What is the expected level of soluble target in your studies?
- Only evaluate what is needed !
 - No need to do too much if not required.
 - Evaluate the drug/target tolerance mapping concept?

Key takeaway

Anticipate as much as possible all relevant parameters which can impact the development and validation of your ADA assay

Conclusion

- Our ADA methods are not static; they are dynamic and adaptable tools.
- Throughout their life cycles, numerous factors can shape their performances, including new regulations and biological insights.
- We must continually question our methods' capabilities; they have much to teach us !
- Science should be our guiding compass in making informed choices and decisions.

Key takeaway

Embrace how your ADA methods evolve, use their insights and let the Science guide your decisions throughout their lifecycles

ADA Life cycle

Acknowledgement

- The **Regulated Bioanalysis & Biosample Operation Chapter** (RBBO), led by Matt Barfield.
- My Clinical Pharmacology and Pharmacometrician
 Colleagues from pRED Pharmaceutical Sciences who play a crucial role in the overall bioanalytical data interpretation.
- My Colleagues from **Chugai Pharmaceutical CO., Ltd** who designed and developed all bioanalytical methods.
- Our **External Partners** who validated the different methods and has been running sample analysis for over a decade.

Doing now what patients need next