

Mechanistic and Statistic Partitioning the Technical Variability of Ligand Binding Assays in Distinct Formats

Yongzhong Zhao, PhD Frontage Laboratories, Inc. 16th EBF Open Symposium 15NOV23, BARCELONA

ICH M10 LBA Guideline
Distinct LBA assays
LBA (PK, Biomarker, ADA)
Partitioning technical variabilities
Deterministic effect
4PL model
Linear Mixed Models
LLOQ
Gyros-Lab
SIMOA
Zero-inflated models

- ±20% for RE & CV, except for the LLOQ and ULOQ, where it should not exceed 25%.
- For non-accuracy and precision validation runs, at least 2/3 of the total QCs and at least 50% at each concentration level should be within ±20% of the nominal values.
- TE should not exceed 30% (40% at LLOQ and ULOQ).
- Detailed regression models including weighing factors for LBA assays, which are deterministic factors for technical variability for LBAs, are not available in ICH M10.
- Stochastic factors, including batch effects, are not detailed in ICH M10.
- Both distinct formats of LBAs and inherent Ab-Ag affinity and avidity are crucial for technical variability.

25 July 2022 EMA/CHMP/ICH/172948/2019

Committee for Medicinal Products for Human Use

ICH Guideline M10 on Bioanalytical Method Validation and Study Sample Analysis

Step 5

Oistinct Formats for Anti-Drug Antibodies Assays

Partitioning Technical Variabilities (Stochastic)

Variability and LLOQ are Not Independent

In-Well (Without X	Deterministic	Stochastic
Dilution Factor)	Factors	Factors

Platform	LLOQ	CV%
ELISA	~1 ng/mL	<15%
MSD	~2 pg/mL	<15%
ELLA	~1 pg/mL	<20%
Gyros-Lab	~1 pg/mL	<25%
SIMOA	~0.2pg/MI	<30%

In general, LLOQ and variability are negative correlated.

$$\frac{[RL]}{[R][L]} = \frac{k_{\text{on}}}{k_{\text{off}}} = K$$

K, the equilibrium affinity constant, has dimensions of M^{-1} . As *K* (analogous to the thirst of the delegates) increases, so the concentration of the receptor–ligand complexes increases at the expense of the free species. Alternatively,

$$\frac{[R][L]}{[RL]} = \frac{k_{\text{off}}}{k_{\text{on}}} = K_{\text{d}}$$

$$Y(t) = A + rac{K-A}{(C+e^{-B(t-M)})^{1/
u}}$$

$$y = d + \frac{a - d}{1 + \left(\frac{x}{c}\right)^b}$$

$$x = c \left(\frac{a-d}{y-d} - 1\right)^{\frac{1}{b}}$$

- Simple linear regression can work well for ELISA, especially for IVD kits;
- Weighing factor for 4/5 PL impact result, including CV% and RE%;
- Log-log transformation may be needed;
- For laboratory developed test (LDT), determined by LBA platforms.

Standard Curves (Data Transformation)

$$egin{array}{rcl} \mathbf{y}_i &=& \mathbf{X}_i oldsymbol{eta} + \mathbf{Z}_i \mathbf{b}_i + oldsymbol{arepsilon}_i \ \mathbf{b}_i &\sim& \mathbf{N}_q(\mathbf{0}, oldsymbol{\Psi}) \ oldsymbol{arepsilon}_i &\sim& \mathbf{N}_{n_i}(\mathbf{0}, oldsymbol{\sigma}^2 oldsymbol{\Lambda}_i) \end{array}$$

where

- \mathbf{y}_i is the $n_i \times 1$ response vector for observations in the *i*th group.
- \mathbf{X}_i is the $n_i \times p$ model matrix for the fixed effects for observations in group *i*.
- β is the $p \times 1$ vector of fixed-effect coefficients.
- \mathbf{Z}_i is the $n_i \times q$ model matrix for the random effects for observations in group *i*.
- \mathbf{b}_i is the $q \times 1$ vector of random-effect coefficients for group i.
- ε_i is the $n_i \times 1$ vector of errors for observations in group *i*.
- Ψ is the $q \times q$ covariance matrix for the random effects.
- $\sigma^2 \mathbf{\Lambda}_i$ is the $n_i \times n_i$ covariance matrix for the errors in group *i*.

Scientist Lot Batch Instrument

High Analyte Concentration

Figure 1: Example of desired binding profile in Gyrolab Viewer

Figure 2: Example of binding profile that indicates saturated detector signal

Figure 3: Example of binding profiles that indicate lower affinity (left) and higher affinity (right) between capture reagent and analyte

$$f(k;\lambda) = \Pr(X{=}k) = rac{\lambda^k e^{-\lambda}}{k!}$$

 λ =-ln(N-neg/N-total)

 $\lambda = \mathrm{E}(X) = \mathrm{Var}(X).$ CV = std/mean = $\sqrt{\lambda}/\lambda$

$$f_{Y|\mathbf{X},\mathbf{W}}(y;\mathbf{X},\mathbf{W},\boldsymbol{\beta},\boldsymbol{\vartheta},\boldsymbol{\alpha}) = \begin{cases} \pi + (1-\pi)p_{Y|\mathbf{X}}(0;\mathbf{X},\eta,\boldsymbol{\vartheta}), & \text{for } y = 0; \\ (1-\pi)p_{Y|\mathbf{X}}(y;\mathbf{X},\eta,\boldsymbol{\vartheta}), & \text{for } y \in \mathbb{N}^+, \end{cases}$$

For Fit-for-Purpose Design, Relaxed Criteria Might be Needed.

- Technical variability control (TVC) is the prerequisite for assess biological variabilities;
- A better understanding the deterministic and stochastic partitioning LBA holds the promise to foster validation accomplishment;
- Distinct formats my have specific criteria for validation as the sensitivity might be at the cost of technical variabilities;
- > LBA platforms should be carefully chosen, given the characteristics of analytes;
- Linear mixed model can be employed to dissect technical variability;
- Zero-inflated model can be applied to SIMOA platform;
- > ICH M10 Guideline may require science-based adaptation, namely, fit-for-purpose.

Victoria Thilker, MS
Christopher Edwards, BS
Eranga Wettewa, PhD
Yongjin Liu, PhD
Zhongqiang Qiu, PhD
Wangxi Luo, PhD
Lili Liao, PhD
Jialu, Liu, PhD
Nan Zhang, MD PhD
John Lin, PhD

