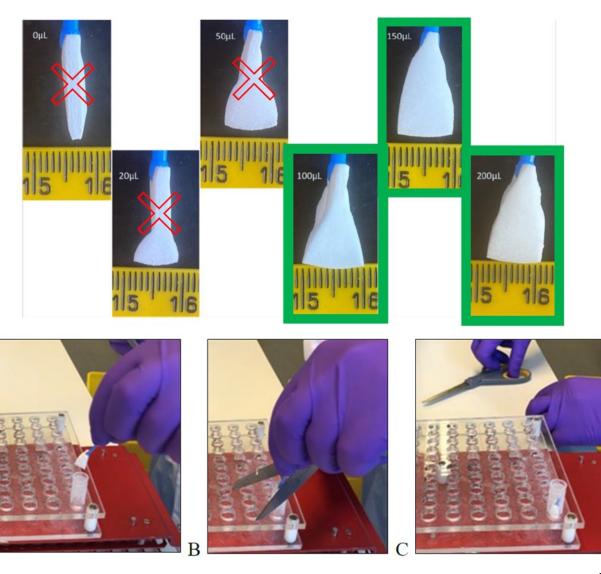
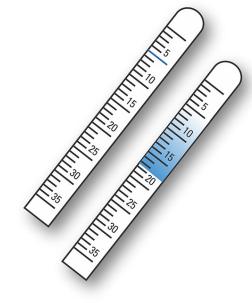
Human biological samples were sourced ethically, and their research use was in accord with the terms of the informed consents under an IRB/REC approved protocol

gsk.com

Challenges in human tear analysis: Development of a fit-forpurpose qualitative immunoassay to detect biopharmaceutical exposure in rare matrices


Sarah Childs; Bioanalysis, Immunogenicity and Biomarkers

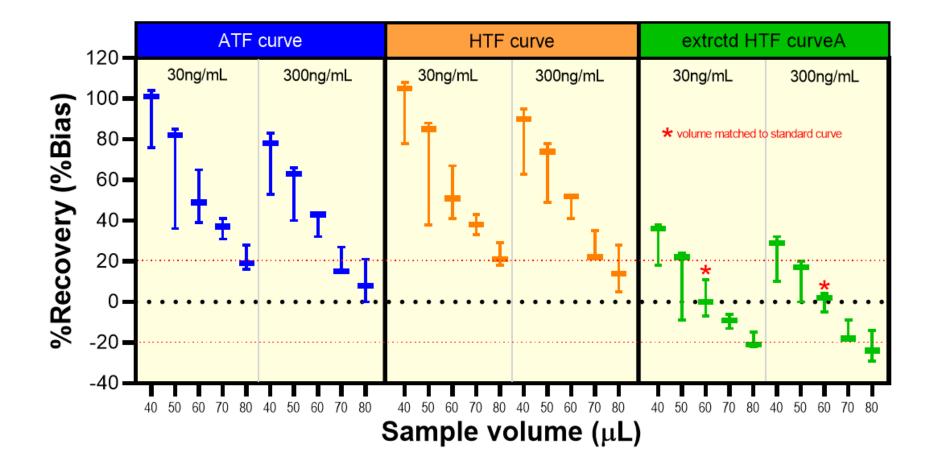
- Evaluating therapeutic antibody exposure at target sites is a critical task in biopharmaceutical development in the clinic
- Clinical study design to understand the pharmacokinetics, safety, tolerability and relationship between exposure in tear fluid and plasma concentration
- Challenges encountered in bioanalytical support of human tear analysis


Sampling Device

- PVA eye sponges were selected as tear fluid sample collection devices due to patient comfort, compliance and ease of use
- Request was for a quantitative assay:
 - PVA spear tips stored in CryoTubes and transferred to BIB laboratory
 - Spears centrifuged to collect liquid tear eluate
 - Eluate analysed to provide quantitative data

Quantitative Immunoassay

- A quantitative analyte specific immunoassay on both the Gyrolab and MSD platform had already been developed, validated and used extensively both in-house and externally
- Species:
 - Mouse, Rat, Rabbit, Cyno and Human
- Matrices:
 - Plasma, Serum, Blood:Water
 - **Tears** (Schirmer Tear Test Strip)
 - Analyte extracted directly into assay buffer diluent
 - Quantitative result given per volume of tear
- Validation to support these clinical studies
 - Assessment of analyte (QC) recovery from PVA sample collection device



Validation - Assessment of Analyte Recovery

- Challenges once sample analysis began
- Study samples received at BIB laboratory demonstrated a poor and variable recovery of volume
 - Sample range 0 100 uL
 - Variable viscosity
- ICH guideline M10 on bioanalytical method validation and study sample analysis:

"The QCs are intended to mimic study samples and should be prepared by spiking matrix with a known quantity of analyte, stored under the conditions anticipated for study samples and analysed to assess the validity of the analytical method."

Validation - Assessment of Analyte Recovery

 Assessment of analyte recovery across sample volume ranges showed a non-proportional increase in analyte recovery

Validation – What Now?

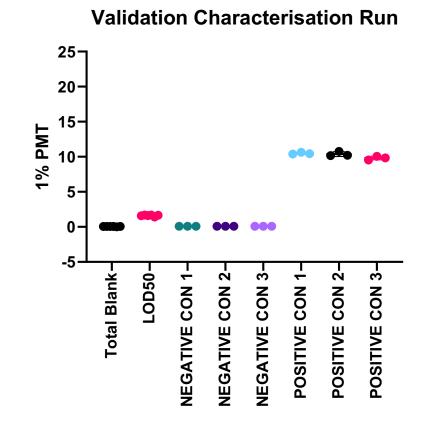
- Unable to validate quantitative assay which was reflective of study samples
 - Variable sample volume
 - Non-proportional increase in analyte recovery

• Understanding what your data will be used for – generating scientifically meaningful data

Clinical Study Design

Objectives	Endpoint			
Primary				
 To describe the effect of renal impairment on the analyte PK 	 Analyte concentration in plasma, PK parameters 			
Secondary				
 To evaluate safety and tolerability using clinical parameters, including adverse events, vital signs and clinical laboratory assessments 	Change from baseline in vital signs (blood pressure and heart rate), monitoring and incidence of adverse events, toxicity grading of clinical laboratory tests, and physical examinations			
Exploratory				
• To evaluate the presence/concentrations of analyte in tear fluid in participants and explore relationship between tear fluid and plasma concentration	 Presence/concentrations of analyte in tear fluid at baseline and on treatment, as data permits Relationship between tear fluid and plasma 			

• Relationship between tear fluid and plasma concentrations of analyte, as data permits

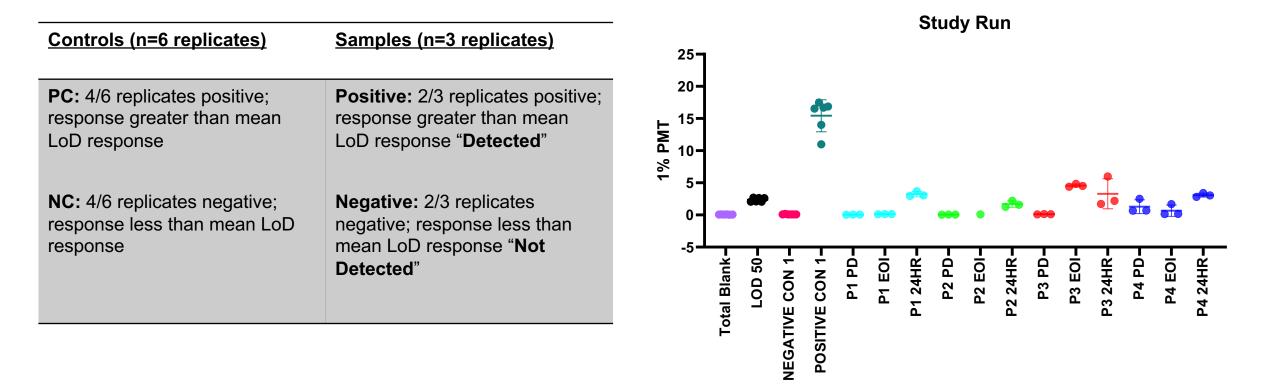

Taking a different approach – Qualitative Assay

- Designed to minimise the false positive rate for drug naïve individuals by using a floating cut point
- Cut-point based on a Limit of Detection (LoD) calibrator
 - LoD calibrator level established by screening using naïve individual human tears
- Negative and positive control samples were prepared in human tears, stored on the PVA sample collection device and extracted in the same manner as the study samples
- Acceptance criteria set on validation performance

Taking a different approach – Qualitative Assay

• Characterisation:

• Validation:


Validation Experiment	On-Spear			Extract				
	NC1	NC2	PC1	PC2	NC1	NC2	PC1	PC2
Selectivity	×	×	\checkmark	\checkmark	×	×	\checkmark	\checkmark
Combined Short Term Stability with Freeze-Thaw	×	×	~	~	×	×	~	~
Long Term Stability	×	×	\checkmark	\checkmark	×	×	\checkmark	\checkmark

- × Not Detected
- \checkmark Detected

Taking a different approach – Qualitative Assay

• Run Acceptance Criteria:

In Study Data:

Challenges Working With Unusual Matrices and Sampling Devices

- Artificial Tear Fluid (ATF), evaluated during method development
 - Good concordance with human tears
 - Issue with recovery from sampling device led us away from using as a true surrogate matrix
 - ATF used for initial working stock preparation
- Sample preparation on Echo 525 liquid handler was not compatible with the sponge eluate
- Tears are complex
 - Three layers containing enzymes, lipids, metabolites and electrolytes
 - Inner mucus layer, watery middle layer, outer oily layer
 - Different types: Basal, Reflex and Emotional
- Unknown how the PVA sampling device changes this composition

- Challenges in-study with sample volume recovery from collection device led us to take a different approach
 - Validation samples must mimic study samples
- Qualitative assay developed which was able to address the question set out in the clinical study design
 - To evaluate the presence/concentrations of analyte in tear fluid in participants and explore relationship between tear fluid and plasma concentration
- Able to demonstrate control in a qualitative assay by using a strategy that minimised the false positive rate and used a floating cut point
- Challenges with unusual and difficult to obtain matrices and sample collection device

Acknowledgements

- Tim Townend
- Robert Biddlecombe
- David Berry
- Mike Wright