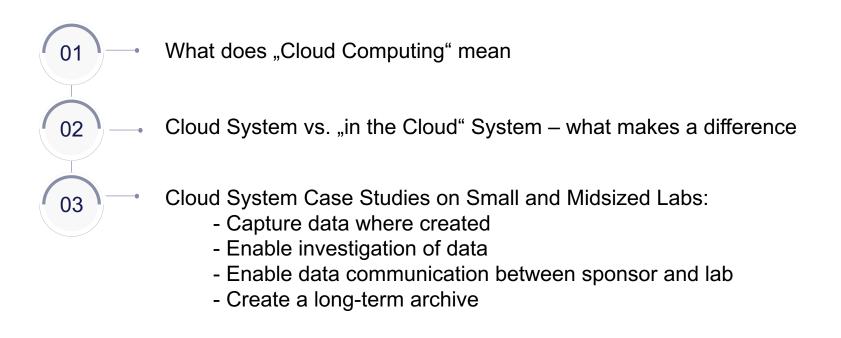


Case study on the implementation of a regulatory compliant data platform for planning and execution, collaboration, review and reporting of bioanalytical studies.

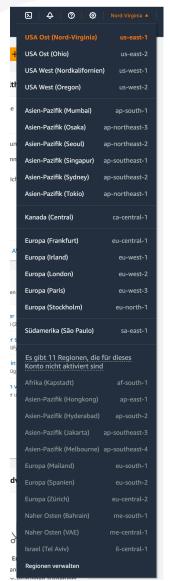
Norbert Bittner

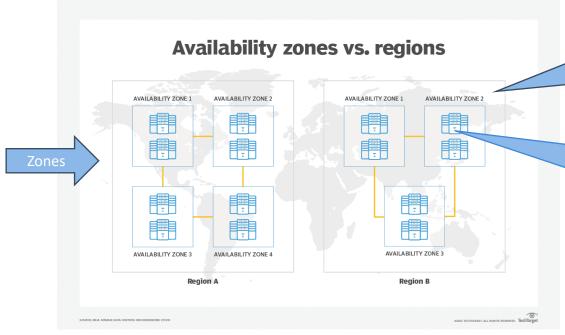
or - Teaching Old Dogs New Tricks


"Take it from us - the only thing stopping our pets learning through life is our own prejudices."

https://www.walkervillevet.com.au/blog/myth-10-you-cant-teach-an-old-dog-new-tricks/

Topics

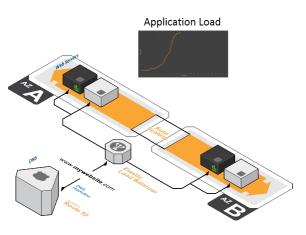

Is this "the cloud"?


AWS Data Center Oregon

"The number of servers in each data centre can range from 50,000 to 80,000."

Region – Availability Zone - Data Center

The AWS Cloud spans 102 Availability
Zones within 32 geographic regions
around the world, with announced plans
for 15 more Availability Zones and 5 more
AWS Regions in Canada, Germany,
Malaysia, New Zealand, and Thailand.


"A common misconception is that a single zone equals a single data center. In fact, each zone is backed by one or more physical data centers, with the largest backed by five."

https://docs.aws.amazon.com/whitepapers/latest/awsoverview/global-infrastructure.html

https://baxtel.com/data-center/aws-eu-frankfurt-region-eu-central-1

Example services within and across zones and regions

- load balancing
- failover redundancy
- backups

Cloud computing is the on-demand delivery of IT resources over the Internet with pay-as-you-go pricing.

https://aws.amazon.com/what-is-cloud-computing/?nc1=h_ls

Cloud computing is the on-demand delivery of IT resources over the Internet with pay-as-you-go pricing.

Cloud computing - defined

Cloud computing is the on-demand delivery of IT resources over the Internet with pay-as-you-go pricing.

 $https://aws.amazon.com/what-is-cloud-computing/?nc1=h_ls$

Cloud computing is the on-demand delivery of IT resources over the Internet with pay-as-you-go pricing.

Cloud computing is the on-demand delivery of IT resources over the Internet with pay-as-you-go pricing.

Instead of buying, owning, and maintaining physical data centers and servers, you can access technology services, such as computing power, storage, and databases, on an as-needed basis from a cloud provider like Amazon Web Services (AWS).

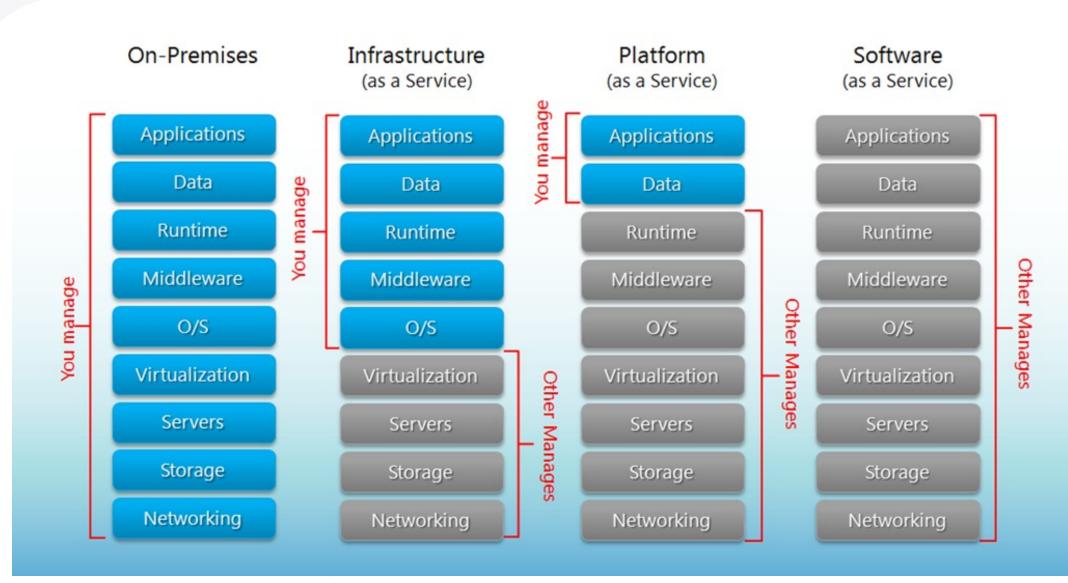
https://aws.amazon.com/what-is-cloud-computing/?nc1=h_ls

Cloud system vs. "in the Cloud" system – what makes the difference

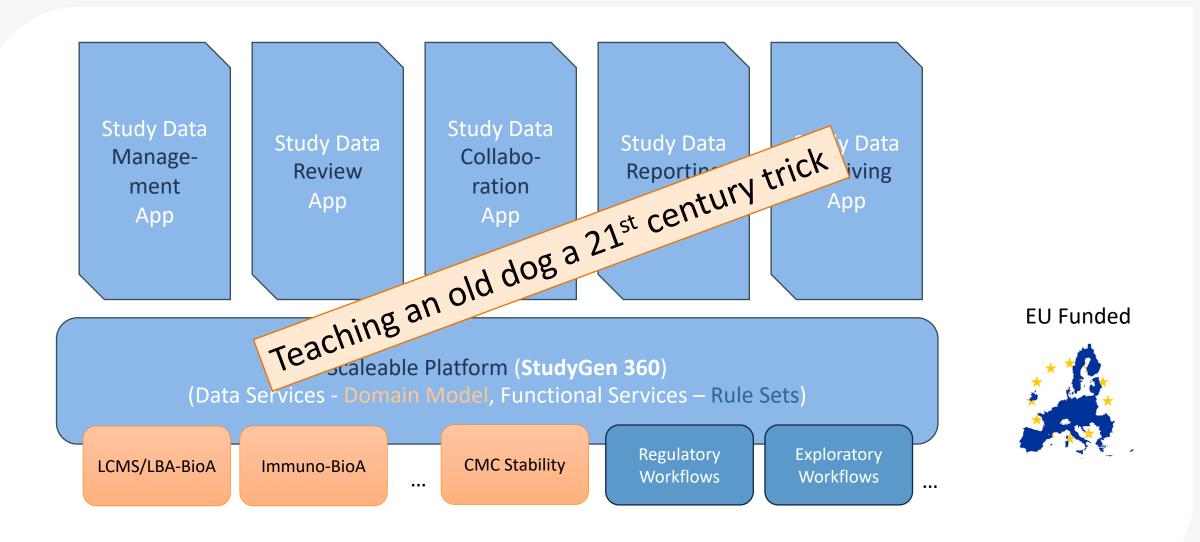
Move existing systems "in the cloud":

Server virtualization

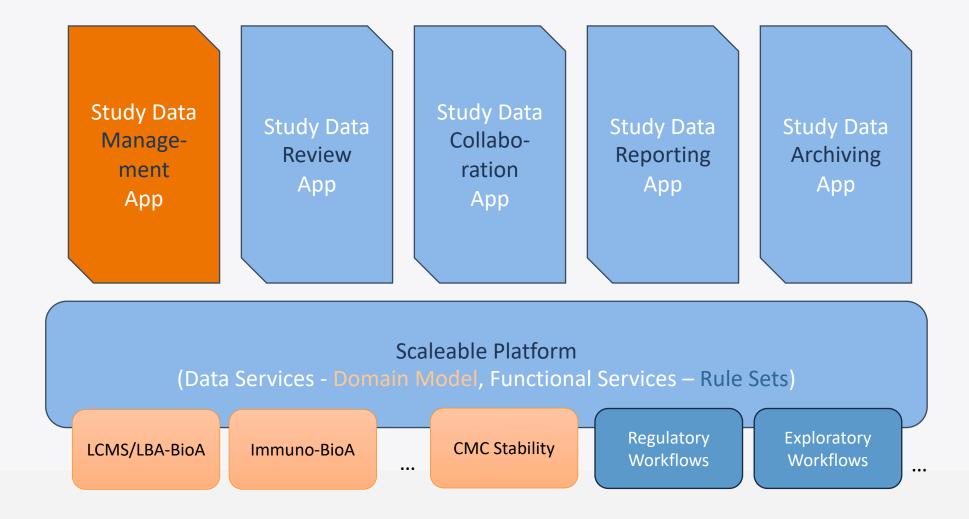
- "Run the Software on someone else's hardware"
- Benefits
 - Some services
 - Delegate responsibility
- laaS (Infrastructure as a service)


or

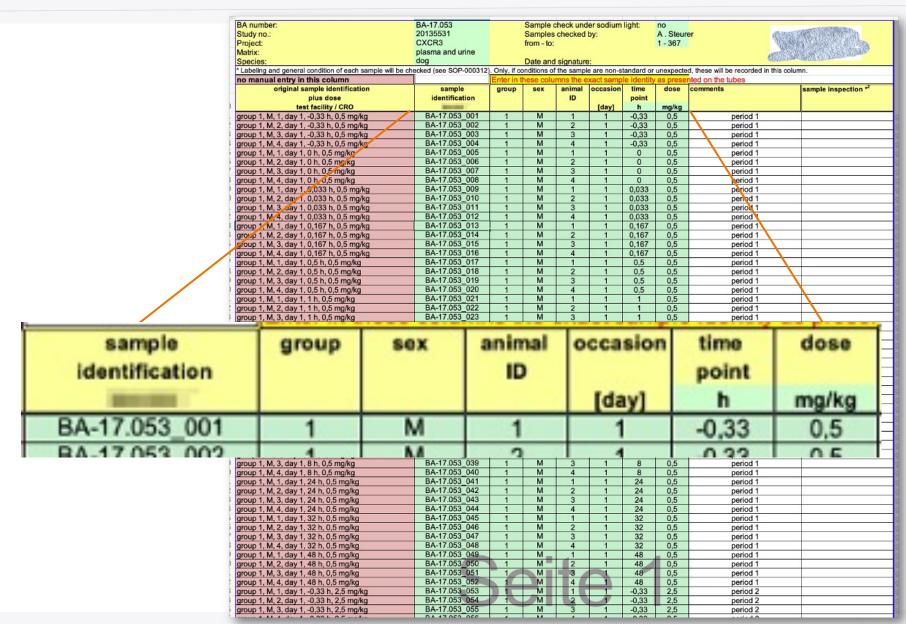
PaaS (Platform as a service)



Cloud Systems - Shared Responsibility

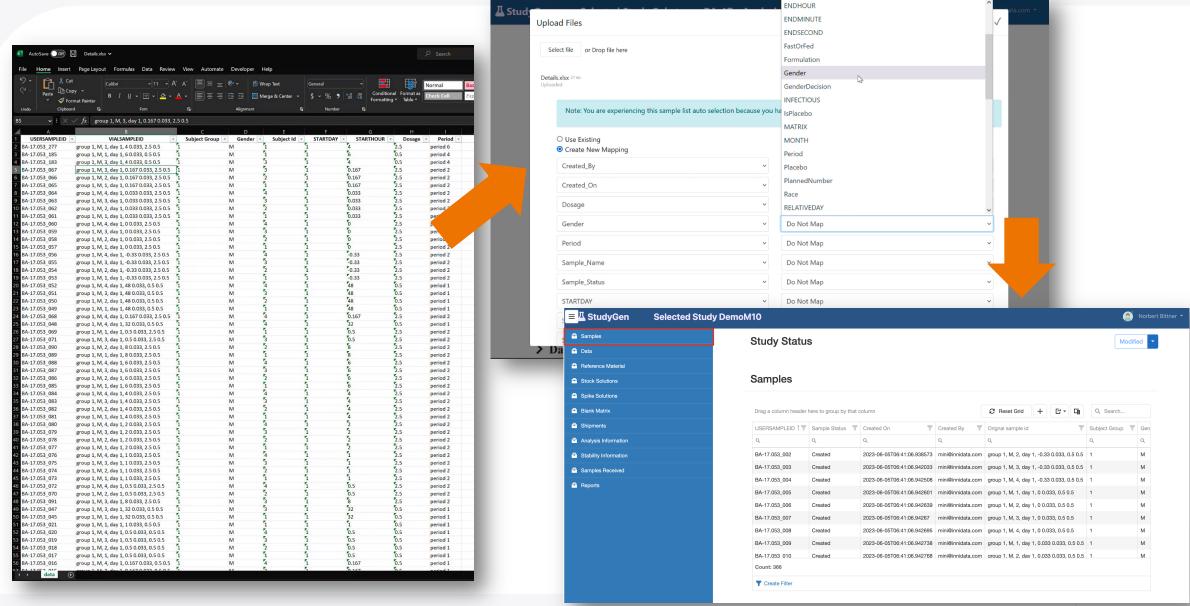


Cloud System – Study Data Management Architecture

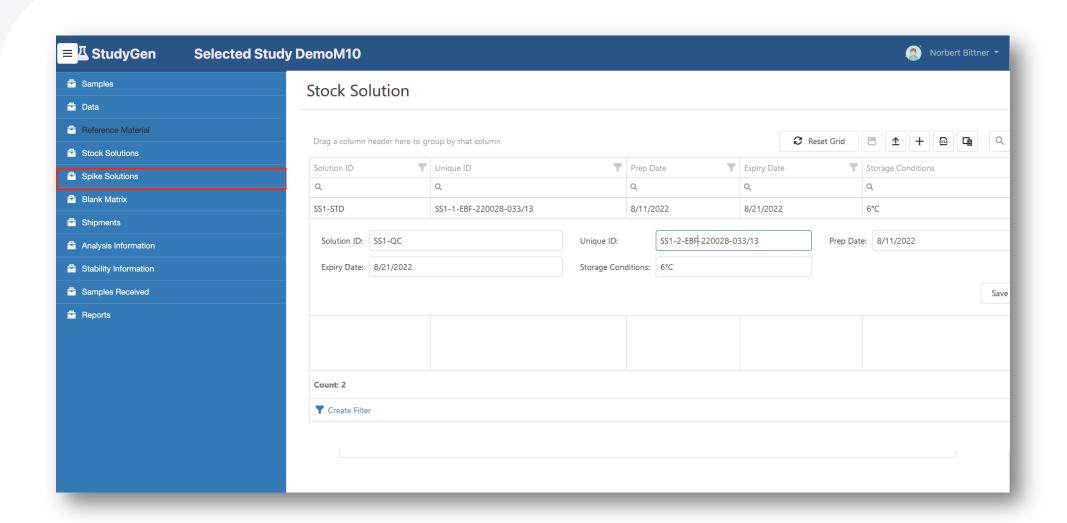


Study Data Management

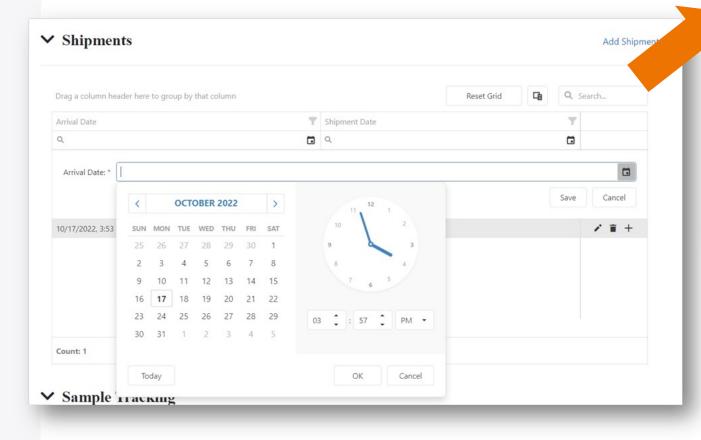
Case Study: Capture data where created

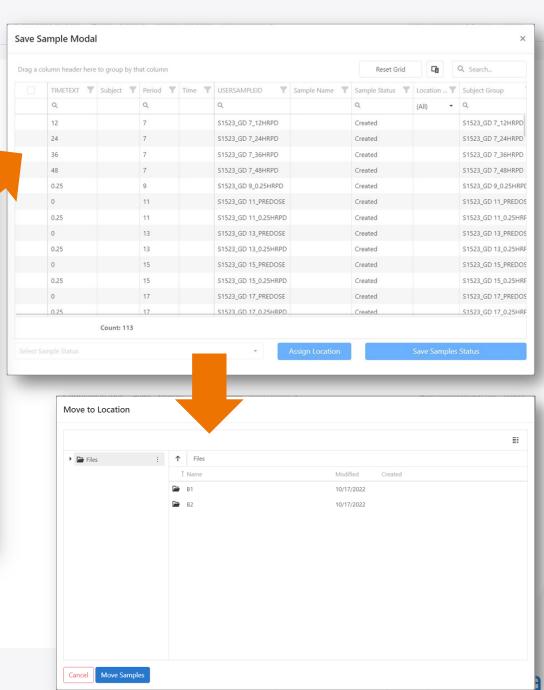

Manual Workflow - without LIMS

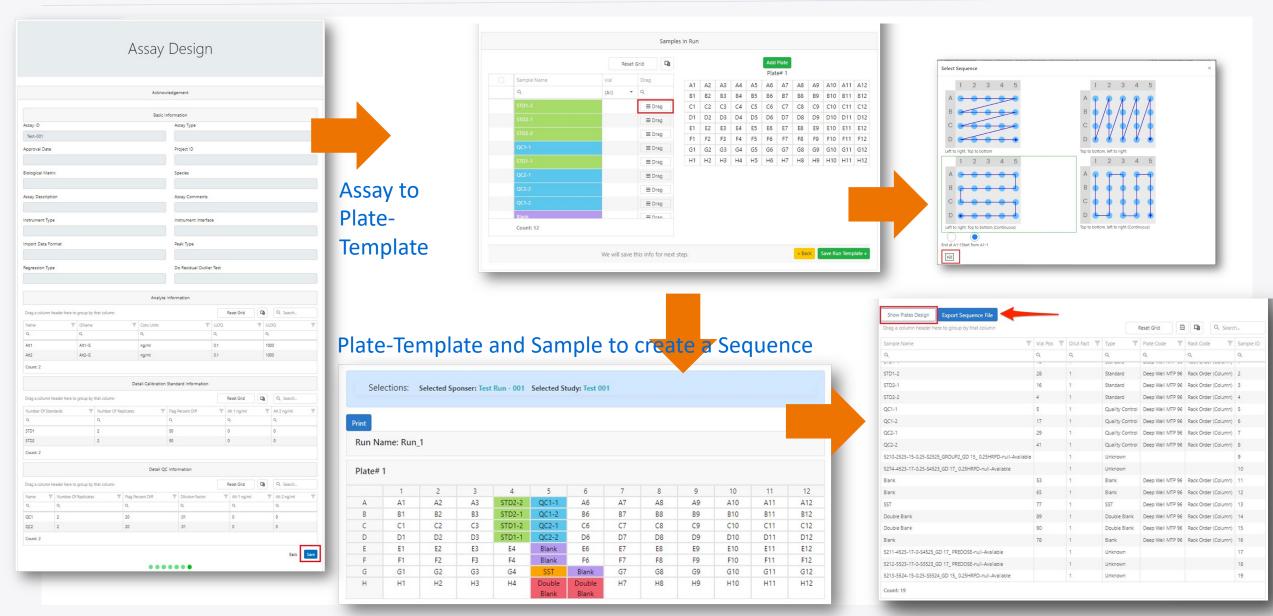
Demographic



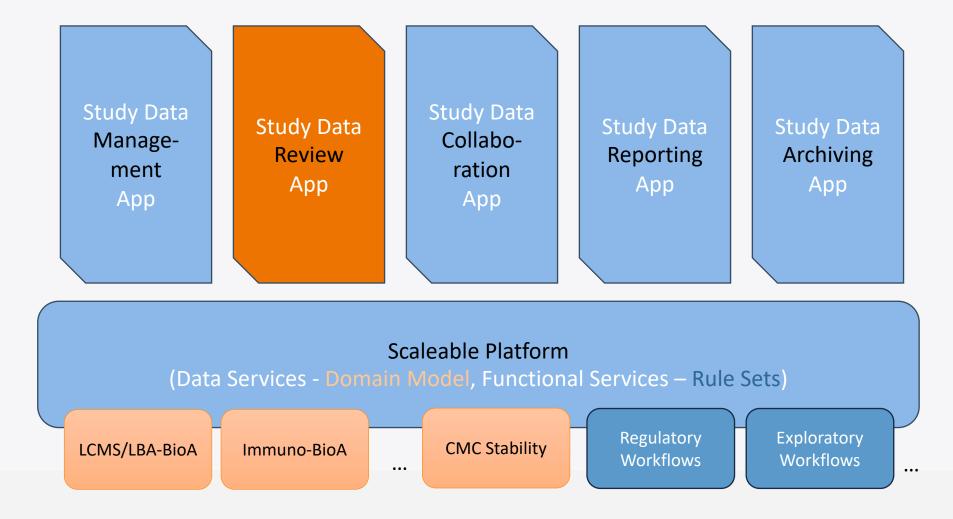
Either Uploading Data (Demographics) or ...



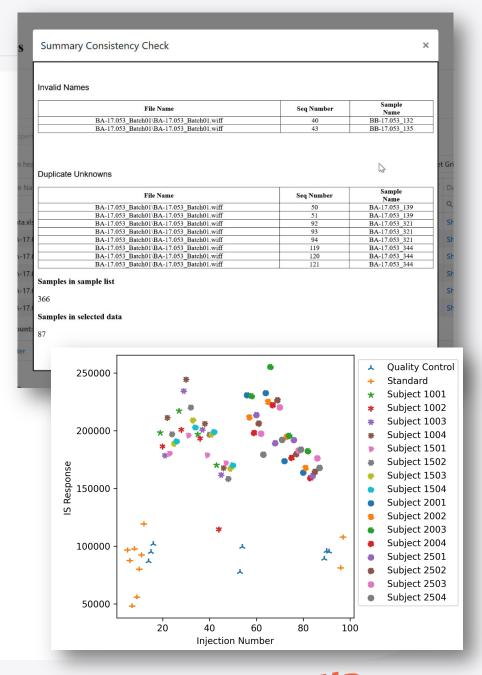

Entering Data in Forms



Sample Receipt and Storage



Run/Batch-Planning and Plate-Layout design

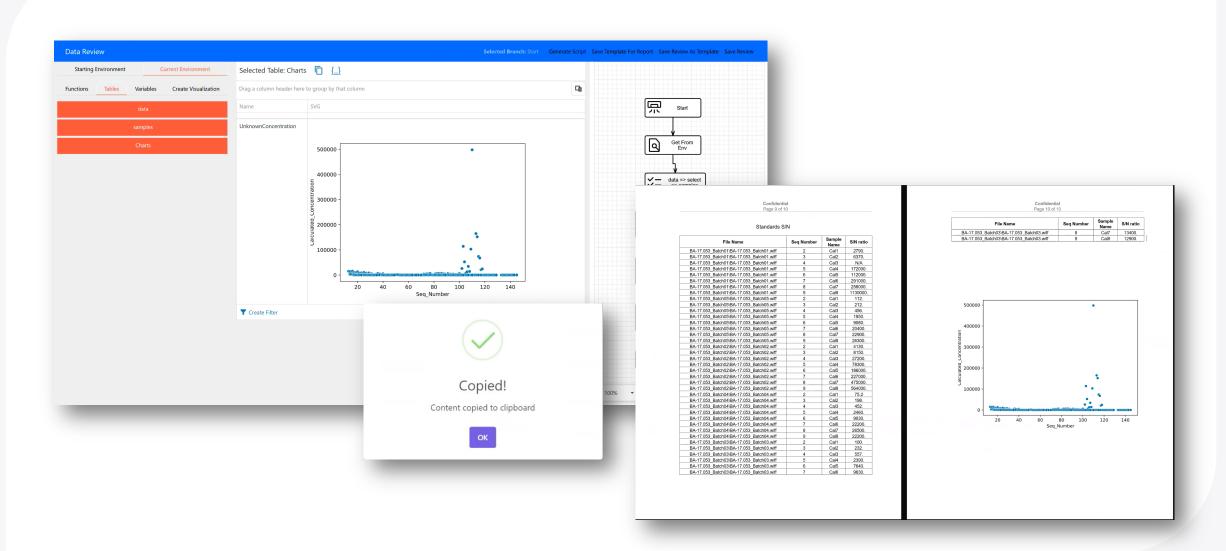


Study Data Review

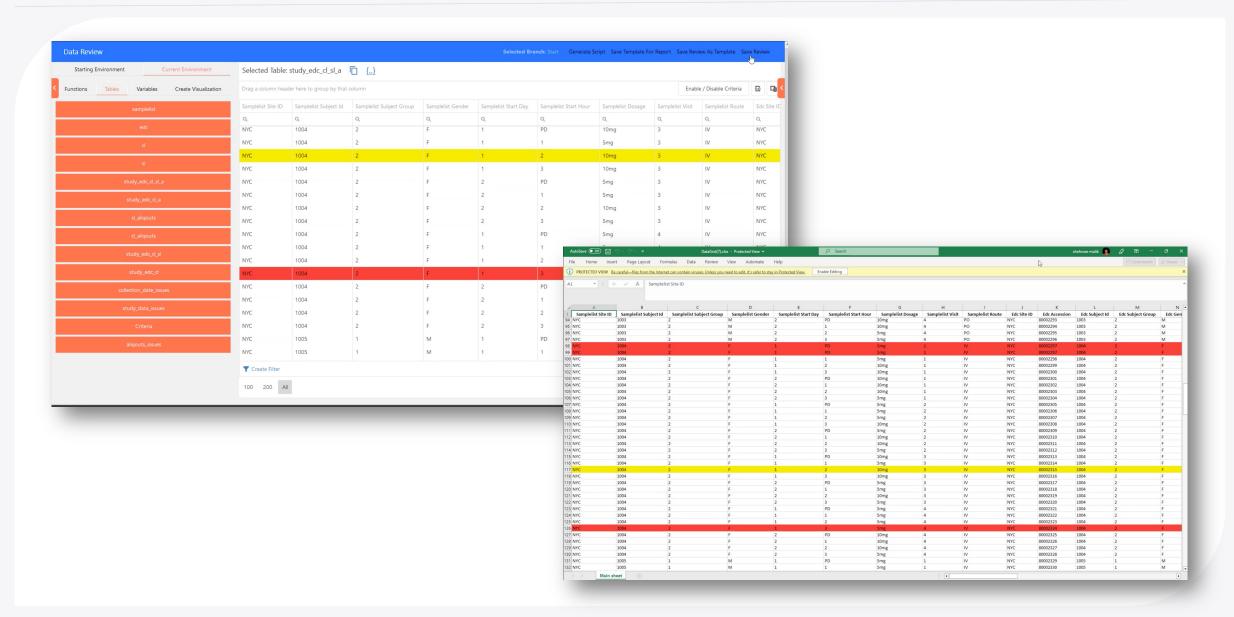
Case Study: Enable Scientists to Investigate Data

Sponsors concerns

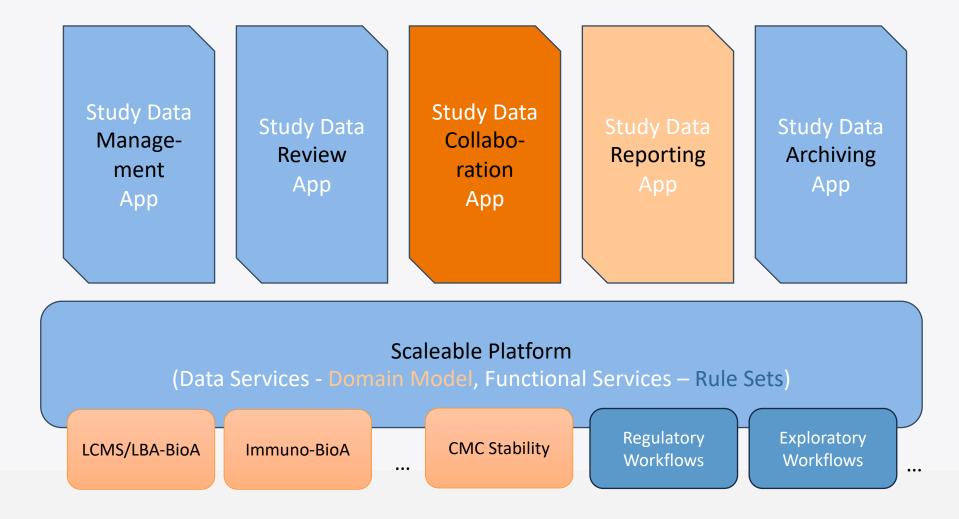
- Quality Parameter driven data review to meet scientific quality objectives
 - beyond "standard" reporting provided by CRO
- Individual definition of
 - Quality Parameters (e.g)
 - Sequence of samples/injections consistent
 - Was there a stop/restart
 - Quality Attributes (e.g.)
 - Precision and Accuracy
 - Is there a cross well contamination
 - Matrix effect on STDs/QCs vs. Samples
 - Background and STDs/QC response drift and range changes (in/between runs)
 - S/N consistency
 - Specifics for LC/MS
 - Integration parameters, peak shape, IS variation, retention time variation, carryover, interference peak ...
- Templateable and reusable data analysis
- Trackable collaboration on data-review


Data-Review –Templates

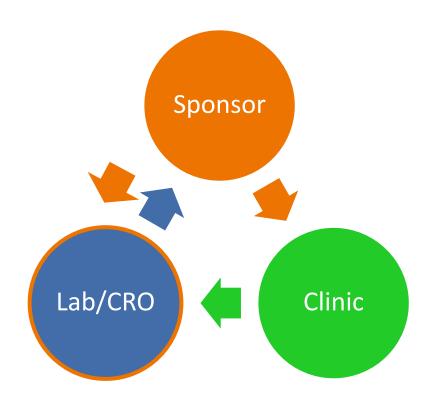
- Interactive Scenario-Builder to create Review-Templates
 - GUI to support configuration



Applying a preconfigured Review-Template



Record / Field highlighting part of scenario builder to compare data



Study Data Collaboration & Reporting

Case Study: Enable Communication and Access

Who creates / is in need of what study data

- Study Data Management
 - Receive Multiple Sample Shipment Manifest
 - Sample Receipt Data Documentation
 - Handle Demographics data incl. "Reconciliation"
 - Sample Storage Documentation
 - Sample Preparation Documentation, incl. Materials
 - Run/Batch Data
 - Assay and Method Documentation
 - Run/Batch-Planning and Plate-Layout design
 - Interfacing with devices (Run-Sequence, Result-Files)
 - Data Review and Evaluation
 - Reassay-Handling
- Study Data Reporting
 - Regulatory Reporting (BioA-Report, Validation-Report)
 - DTA Files
 - SEND PC-Domain Files

DTA Files

- Configurable per Sponsor/DTA
- Consitent with any other reports

4	Α	В	С	D	E	F	G	н	1	J	К	L
4	Actual Sampling			Subject		Nominal		Biological		Concentration	Concentration	
5	Date/Time	Analyte	Subject	Group	Time Text	Time (Design)	Run Id	Matrix Abbreviation	Concentration	(Rounded)	(Sig.Figs.)	Concentration Units
6	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM				ng/mL
7	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM				ng/mL
8	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM				ng/mL
9	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM				ng/mL
LO	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM				ng/mL
1	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM				ng/mL
.2	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM				ng/mL
.3	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM				ng/mL
.4	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM				ng/mL
.5	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM				ng/mL
.6	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM				ng/mL
.7	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM				ng/mL
.8	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM				ng/mL
.9	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM				ng/mL
0	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM				ng/mL
1	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM				ng/mL
2	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM				ng/mL
3	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
4	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
5	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
6	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
7	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
8	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
9	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
0	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
1	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
2	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
3	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
4	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
5	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
6	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
7	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
8	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
9	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
0	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
1	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
2	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
3	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL
4	25-Jan-2019	Analyte1	101-001	1	D2 24H	48	1	PLM	14,1752135556753	14,18	14	ng/mL

Regulatory Reporting (M10 Scope)

2.4. Standard and Quality Control Solutions Summary

Human plasma and whole blood treated with K_2 EDTA was used to prepare calibration standards and quality control samples. Standards and QCs were prepared by spiking DRUG1-001 working solutions into human plasma or whole blood. Dried blood standards and QCs were prepared from the spiked human whole blood. Spiking volume was never greater than 5% of the total volume. For dried blood standard and QC preparation, spiked human whole blood was added to Tasso M20 devices at a volume of $90\mu L$ to simulate sample collection. The device was then dried overnight at room temperature before standard and QC qualification. Plasma and whole blood standards and QCs were aliquoted and stored at -20° C for future use.

Solution ID	Unique ID	Prep Date	Expiry Date	Storage Conditions
STDs	STD-DRUG1-220028-033/15	19-Aug-22	6-Sep-22	-20°C
QCs	QC-DRUG1-220028-033/15	19-Aug-22	6-Sep-22	-20°C
STDs	STD-DRUG1-220028-034/10	20-Aug-22	7-Sep-22	-20°C

Solution ID	Unique ID	Prep Date	Expiry Date	Storage Conditions
QCs	QC-DRUG1-220028-034/10	20-Aug-22	7-Sep-22	-20°C
STDs	STD-DRUG1-220028-035/9	20-Aug-22	30-Aug-22	RT
QCs	QC-DRUG1-220028-035/9	20-Aug-22	30-Aug-22	RT

2.5. Acceptance Criteria of Calibration Standards

For in Human Dried Blood, Human Plasma and Human Whole Blood, a <Regression> was used to determine the concentration/detector response relationship. A representative calibration curve is shown for in Human Dried Blood, Human Plasma and Human Whole Blood. The correlation coefficient (r value) must be ≥0.99 in order to demonstrate adequate linearity of the batch. One set of eight calibration standards was included in each quantitative batch. For the batch to be accepted, at least 75% of the calibration standards must have a back-calculated concentration of 100% ± 15.0% of nominal concentration (100% ± 20.0% for the LLOQ). Back-calculated calibration curve standard concentrations for Human Dried Blood, Human Plasma and Human Whole Blood are presented in Table 2- Table 4 respectively. Standard curve parameters for Human Dried Blood, Human Plasma and Human Whole Blood are presented in Table 5- Table 7 respectively.

Analyte	Matrix	Standards Accuracy Range (%)	Standards Precision Range (%)
DRUG1-001	Human Whole Blood	N/A	N/A
DRUG1-001	Human Plasma	95.2% - 103.0%	0.6% - 7.4%
DRUG1-001	Human Dried Blood	93.8% - 104.2%	1.0% - 8.5%

2.6. Acceptance Criteria of Quality Control Samples

Each batch contained at minimum 2 sets of quality control samples at each level (low, medium, and high). At least two-thirds of all QC samples (LQC, MQC, HQC) and at least half at each concentration level must have a back calculated concentration of 100% \pm 15.0% of nominal. The concentration data from the QCs for plasma, whole blood, and dried blood are presented in Table 8- Table 10 respectively.

	Analyte	Matrix	Nominal Concentration (ng/mL)	QC Inter-Batch Accuracy (%)	QC Inter-Batch Precision (%)
³⁰ -	DRUG1-001	Human Whole Blood	3.00	99.0%	7.4%
	DRUG1-001	Human Whole Blood	30.0	107.0%	1.2%
9-	DRUG1-001	Human Whole Blood	375	108.0%	3.2%
Seite 14 von 56 6515 Wörter	Englisch (Vereinigte	Staaten)			□ F

Table 4 Calibration Standards Concentration for DRUG1-001 in Human Dried Blood

	1.0	0	2.0	0	5.0	00	10	.0	50	.0	10	10	40	10	50	00
Batch	ng/r	nL	ng/r	nL	ng/	mL	ng/	mL	ng/	mL	ng/	mL	ng/	mL	ng/	mL
	Conc	%RD	Conc	%RD	Conc	%RD	Conc	%RD	Conc	%RD	Conc	%RD	Conc	%RD	Conc	%RD
1	1.01	1.0	1.98	-1.0	5.11	2.2	9.37	-6.3	54.4	8.8	99.6	-0.4	410	2.5	469	-6.2
6	1.03	3.0	1.96	-2.0	4.32	-13.6	10.6	6.0	52.3	4.6	107	7.0	397	-0.8	478	-4.4
7	1.01	1.0	2.00	0.0	4.64	-7.2	10.4	4.0	49.7	-0.6	95.8	-4.2	417	4.3	515	3.0
N	3		3		3		3		3		3		3		3	
Mean	1.02		1.98		4.69		10.1		52.1		101		408		487	
SD	0.0115		0.0200		0.397		0.660		2.35		5.70		10.1		24.4	
%CV	1.1		1.0		8.5		6.5		4.5		5.6		2.5		5.0	
% Accuracy	102.0		99.0		93.8		101.0		104.2		101.0		102.0		97.4	

Table 5 Calibration Curve Parameters for DRUG1-001 in Human Whole Blood

Batch Slope		Intercept	r-value		
4	0.00743	0.00597	0.9973		
Q	0.00707	0.00132	0.9995		

Table 6 Calibration Curve Parameters for DRUG1-001 in Human Plasma

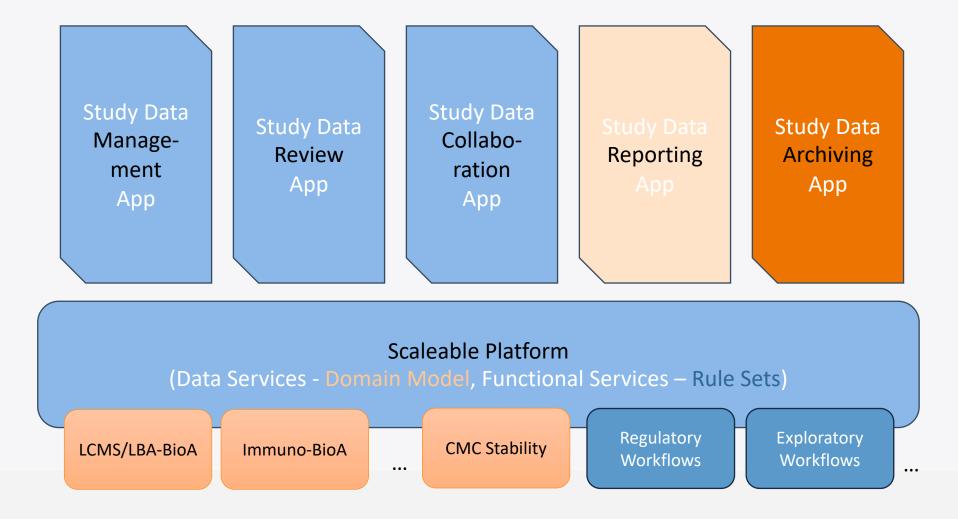

Batch	Slope	Intercept	r-value
2	0.0116	0.000727	0.9995
3	0.0118	0.000222	0.9994
9	0.00941	-0.00146	0.9975
10	0.0102	0.000612	0.9993

Table 7 Calibration Curve Parameters for DRUG1-001 in Human Dried Blood

Batch	Slope	Intercept	r-value
1	0.00974	0.00113	0.9985
6	0.0102	-0.000275	0.9970
7	0.00942	0.00136	0.9990

Table 8 Summary of DRUG1-001 QC samples in Human Whole Blood in the 3.00-375 ng/mL range

Batch	3.0 ng/		30 ng/		375 ng/mL		
	Conc	%RD	Conc	%RD	Conc	%RD	
4	2.92	-2.7	31.9	6.3	417	11.2	
4	2.71	-9.7	32.5	8.3	389	3.7	
N	2		2		2		
Mean	2.82		32.2		403		
SD							
%CV	-		-		-		
%Accuracy	-		-		-		
8	3.24	8.0	31.6	5.3	400	6.7	
8	3.01	0.3	32.2	7.3	414	10.4	
N	2		2		2		
Mean	3.13		31.9		407		

Study Data Archiving

Mission: A New Approach to Archiving

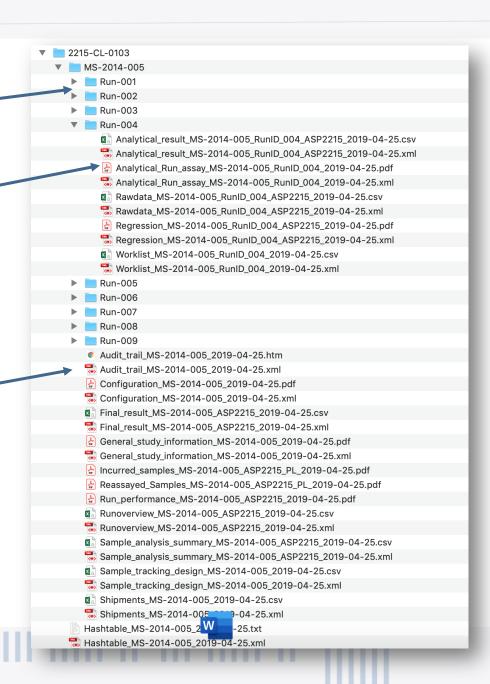
Study Archiving Framework

- Refer to https://www.fda.gov/media/75414/download
- US FDA Guidance for Industry: "21 CFR Part 11; Electronic Records; Electronic Signatures; Maintenance of Electronic Records" was withdrawn (line 100)
 - Section 11.10 (b) was requesting: "The ability to generate accurate and complete copies of records in both human readable and electronic form suitable for inspection, review, and copying by the agency"
 - Replaced with recommendation (line 284ff):

"We recommend that you supply copies of electronic records by: ...

Using established automated conversion or export methods, where available, to make copies in a more common format (examples of such formats include, but are not limited to, PDF, XML, or SGML).

. . .

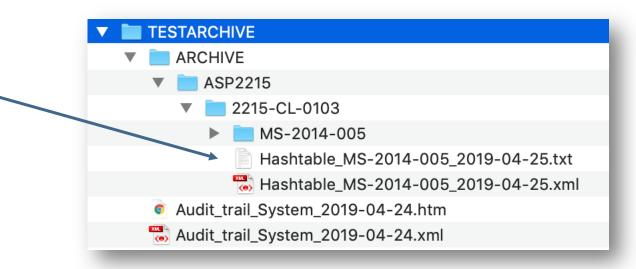

In each case, we recommend that the copying process used produces copies that preserve the content and meaning of the record. ..."

- Case Study: Create Study Archive mechanism that is
 - human readable for fast review without addtl. software
 - consistent with prior submission documents (statistics, comments, ...)
 - as light-weight as possible
 - makes all data accessible to be further processed without knowledge of any software

Human Readable


- PDF document stack
 - Structure by RUN
 - Individual analyte reports
 - with "raw" response value tabulation
 - calibration data (regression info)
 - processing information
 - •
 - Structure by STUDY
 - Audit trail
 - •

Accessible Data


- XML and/or CSV file stack
 - Structure by RUN
 - Individual analyte data
 - with "raw" response value tabulation
 - calibration data (regression info)
 - processing information
 - ...
 - Structure by STUDY
 - Audit trail

Data Integrity

- File with checksum of all files
 - Hash-values of files
- Checksum of this file in processing protocol
 - Hash of Hashes

Algorithm	Hash	Path
SHA256	8e8b22f10cf4516115796809041a2e54df9970a3520ee7ada03dd38056577530	ASP2215\2215-CL-0103\MS-2014-005\Run-001\Analytical_Run_assay_MS-2014-005_RunID_001_2019-04-25.pdf
SHA256	c4dadba6c5234df7d299c914348e9ec537fc5842266b03453cb4f240ea072fc7	ASP2215\2215-CL-0103\MS-2014-005\Run-001\Analytical Run assay MS-2014-005 RunID 001 2019-04-25,xml
SHA256	8b51c10e1746a14fa46085fa067b16a01293765e6dc904cc27a37d3c2aab03a0	ASP2215\2215-CL-0103\MS-2014-005\Run-002\Analytical Run assay MS-2014-005 RunID 002 2019-04-25.pdf
SHA256	adb248c5c4f4d788817f9464786d9dbd562917881714ea11736a68eed6d1bc78	ASP2215\2215-CL-0103\MS-2014-005\Run-002\Analytical Run assay MS-2014-005 RunID 002 2019-04-25.xml
SHA256	98364a74f43e9105604166c1f33da8f0dbdfd5b33c3a953e59be7c1db5c86448	ASP2215\2215-CL-0103\MS-2014-005\Run-003\Analytical Run assay MS-2014-005 RunID 003 2019-04-25.pdf
SHA256	83e10afa4adbb3b5a79880dbfaa7d7764343b8cfce23a5e5d0708b3784cce9bb	ASP2215\2215-CL-0103\MS-2014-005\Run-003\Analytical Run assay MS-2014-005 RunID 003 2019-04-25.xml
SHA256	5c6d45a2c5f6824363619d18d424e63fa8177f184bce4a01dedcb24f332424b1	ASP2215\2215-CL-0103\MS-2014-005\Run-004\Analytical Run assay MS-2014-005 RunID 004 2019-04-25.pdf
SHA256	3fcd126fb6f0fb01d467b3ab97e16b992647b098e41a2ab6b84f0f9ad5d12001	ASP2215\2215-CL-0103\MS-2014-005\Run-004\Analytical Run assay MS-2014-005 RunID 004 2019-04-25.xml
SHA256	4f2726ea14f1f639f0a5f24f0b8f144b0a0f782b97444395080c4dd987cd1421	ASP2215\2215-CL-0103\MS-2014-005\Run-005\Analytical Run assay MS-2014-005 RunID 005 2019-04-25,pdf
SHA256	7b5ee1be9c160e74bcd5d387935534055a6f02aa5420541c316ee5fe793ce16c	ASP2215\2215-CL-0103\MS-2014-005\Run-005\Analytical Run assay MS-2014-005 RunID 005 2019-04-25,xml
SHA256	fc8ed60f0024733c2af619474843808bb574cdf9da4767ddab84d9c4a3594cb0	ASP2215\2215-CL-0103\MS-2014-005\Run-006\Analytical Run assay MS-2014-005 RunID 006 2019-04-25.pdf
SHA256	b2c7f88286b9a852cfb4bb52972926a587bb955b060b5903670739682c4f8ff6	ASP2215\2215-CL-0103\MS-2014-005\Run-006\Analytical Run assay MS-2014-005 RunID 006 2019-04-25.xml
SHA256	47293e719e61a39eff593fb833cff1613de1a7d34de293724105fc49ca89958f	ASP2215\2215-CL-0103\MS-2014-005\Run-007\Analytical Run assay MS-2014-005 RunID 007 2019-04-25.pdf
SHA256	6e10ecdfda1a49a4760ca9d5cfe7f6e4fd08a85c8501ed7ad28a7f8005b2a60c	ASP2215\2215-CL-0103\MS-2014-005\Run-007\Analytical Run assay MS-2014-005 RunID 007 2019-04-25.xml
SHA256	0755d7cf2d11eb67ee1c3e9f034bbb7331b1cb4785c6c3061bccaba67e40df38	ASP2215\2215-CL-0103\MS-2014-005\Run-008\Analytical Run assay MS-2014-005 RunD 008 2019-04-25, pdf
SHAZOO	0/350/CT2011eD0/ee1C3e910340DD/331DTCD4/85C0C3001DCCdDd0/e400138	ASP2215\2215-CL-0103\MS-2014-005\KUN-008\Angly1\cd.\KUN-055dyM-2014-005\KUN-008\2013-04-25.D01

Thank you for your attention

Contact for questions/comments

Norbert Bittner
up to data GmbH
Energie-Allee 1
D-55286 Woerrstadt

norbert.bittner@uptodata.com

