Strategies and Case Studies on the Bioanalysis of Protein Therapeutics and Biomarkers by LC-MS/MS

Shashank Gorityala, PhD 16th EBF Open Symposium | Barcelona, Spain November 15, 2023

AGENDA

- Workflows for Large Molecule LC/MS
- Strategies
- Case Studies
- Summary

Workflows for large molecule LC/MS

LC/MS Approaches for Proteins

DIRECT DIGESTION: SURROGATE PEPTIDE-BASED

HYBRID IA-LC/MS: SURROGATE PEPTIDE-BASED

SAMPLE	ENRICHN		ESTION	LC/MS	
SAMPLE	PROTEIN ENRICHMENT	DIGESTION	PEPTIDE ENRICHM ENT	LC/MS	

HYBRID IA-LC/MS: INTACT PROTEIN-BASED

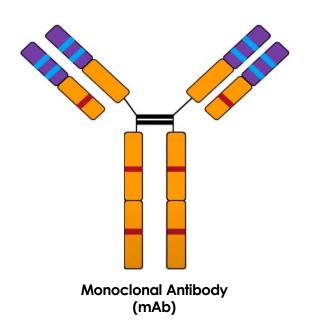
SAMPLE PROTEIN ENRICHMENT LC/MS

LC/MS Approaches for Proteins

Direct Digestion LC-MS	Surrogate Peptide IA-LC-MS	Intact IA-LC-HRMS
 Bottom-up approach (protease cleavage) Recommended SPE clean-up Surrogate-peptide based 	 Immunocapture followed by Bottom-up approach (protease cleavage) Generic – anti-human Fc, Protein A/G, anti-human kappa/lambda, etc Targeted – anti-idiotypic antibody or target antigen-based enrichment 	 Immunocapture followed by Top-down approach Targeted – anti-idiotypic antibody or target antigen- based enrichment High resolution mass spectrometry Deconvolution or XIC summing
PROS: Generic, Less complex CONS: Less selective; matrix effect *Typical LLOQ ~0.2 µg/mL	PROS: High selectivity and sensitivity CONS: Complex, Need reagents *Typical LLOQ ≤ 0.025 µg/mL	PROS: Complete structural information, special applications CONS: Complex, Need reagents *Typical LLOQ ~0.5-5.0 µg/mL

*LLOQ is dependent on analyte, matrix, and capture system.

Strategies

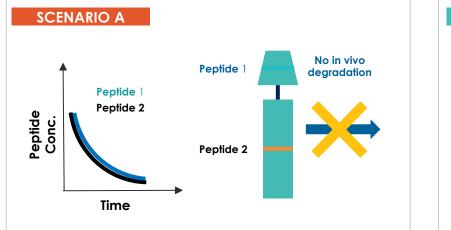

Identification of Surrogate Peptide

- Combination of open source bioinformatic tools
- BLAST is performed based on the biological organism/species

Choice of Surrogate Peptide

UNIQUE PEPTIDES (Variable region)

- Specific to analyte/drug only
- Preclinical/clinical


GENERIC PEPTIDES (Constant region)

- Common within class of mAbs
- Discovery/early development
- Suites preclinical with anti-human capture reagents
- Not for clinical unless anti-idiotypic capture reagents are used

Dual Peptide Approach

- Second peptide as diagnostic probe in discovery-grade and method development phases
- Limitations in regulated studies

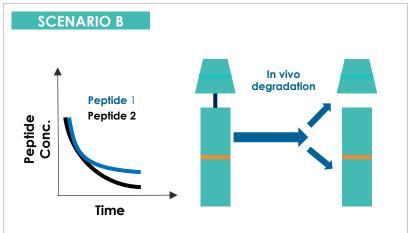
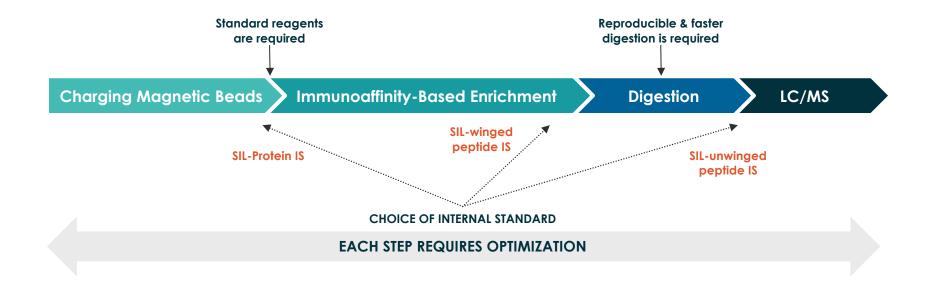
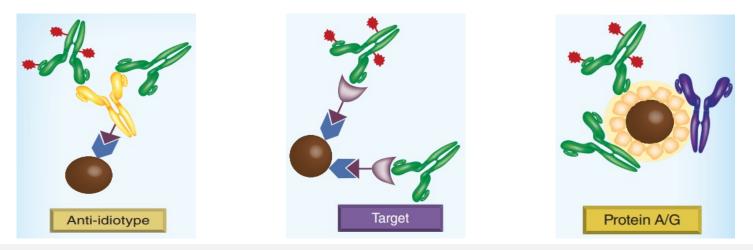



Image: Biomed. Chromatogr. 2012; 26: 1024-1032



Choice of Internal Standard in Hybrid Assays

Choice of Capture System in mAb Therapeutics

- 1. Anti-ID Ab: Paratope and idiotope overlap \rightarrow drug antigen and capture system compete = [unbound drug]
- 2. Anti-ID Ab: Paratope and idiotope do not overlap → drug antigen and capture system donot compete = [unbound drug] + [bound drug] = [total drug]
- 3. Anti-ID Ab: complex specific: [bound drug]
- 4. Target: [unbound drug]
- 5. Protein A/G/Fc-based: [total drug]

Immunocapture Approaches

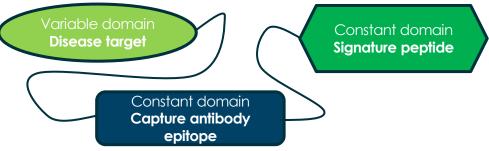
Direct capture

- Streptavidin coated magnetic beads are charged with biotinylated capture antibody before sample incubation
- ✓ Operationally friendly
- Charged beads can be prepared in bulk
- Charged beads are typically stable in refrigerated conditions

= biotinylated capture Ab

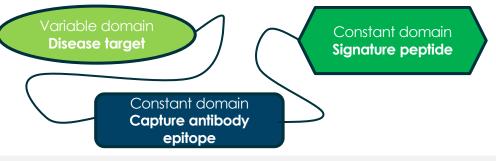
Indirect capture

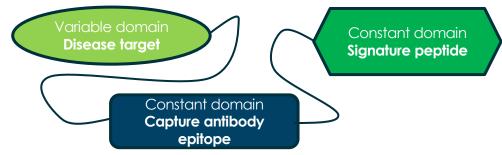
- Biotinylated capture antibody is incubated with sample before charging the streptavidin coated magnetic beads
- Elongated sample preparation time compared to direct capture
- Works well for low concentration analytes (eg: biomarkers)

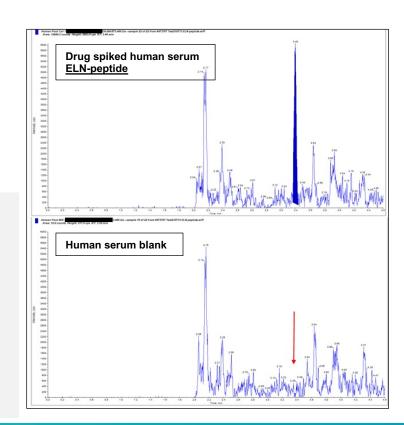

Case Studies

CASE STUDY #1 Platform Assay: Bispecific Therapeutic Program

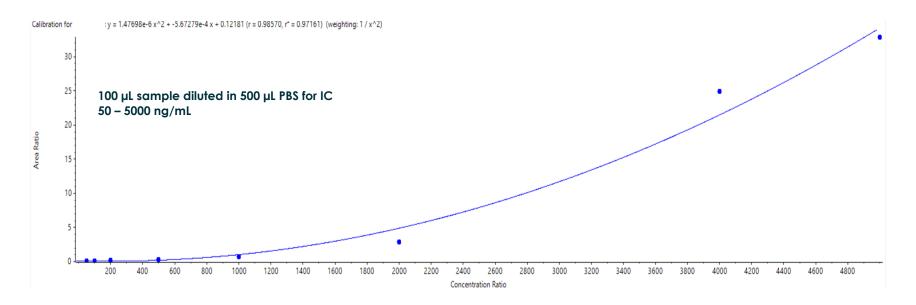
The molecule was designed to form a complex to assist in drug delivery. A PK method to measure the drug monomer was needed. Multiple drug candidates in the program. Candidates share common domains.


Need an LC/MS platform assay for multiple drug candidates


- Peptide candidates from <u>variable region</u>
 ASQ----- LLI------
- Peptide candidates from <u>constant region</u> GLI---NN------ (best in sensitivity) FSG-----ELN------



- Peptide candidates from variable region
 ASQ------
- Peptide candidates from <u>constant region</u> GLI---NN------ (best in sensitivity) FSG------ELN------
- PTM proportion
 difference batch to batch.
 - PTM *in vivo* after drug is dosed?
- GLI-peptide contains PTM on asparagine according to CMC data
- ELN-peptide was selected


- Peptide candidates from variable region
 ASQ----- LUI------
- Peptide candidates from <u>constant region</u> GLI---NN------ (best in sensitivity) FSG-----ELN-----
- GLI-peptide contains PTM on asparagine according to CMC data
- ELN-peptide was selected

CASE STUDY #1 Immunocapture Condition Optimization

Parabola quadratic response

CASE STUDY #1 Immunocapture Condition Optimization

Reasons behind the abnormal curve response

 HIGH CONCENTRATION
 Image: Concentration of protein complex was pH- and concentration-dependent

 Image: Concentration of protein complex was pH- and concentration-dependent
 Image: Concentration of protein complex was pH- and concentration dependent

 Image: Concentration of protein complex was pH- and concentration of protein complex formed
 Image: Concentration of protein complex was pH- and concentration of protein complex formed

 Image: Concentration of protein complex was pH- and concentration when protein-complex formed
 Image: Concentration when protein-complex formed

 Image: Concentration of protein complex was pH- and concentration when protein-complex formed
 Image: Concentration when protein-complex formed

 Image: Concentration of protein complex was pH- and concentration when protein complex formed
 Image: Concentration when protein complex formed

 Image: Concentration of protein complex formed
 Image: Concentration when protein complex formed

 Image: Concentration of protein complex formed
 Image: Concentration when protein complex formed

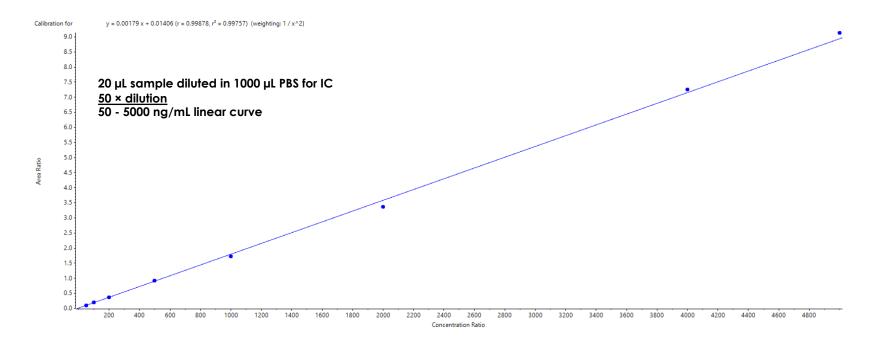

 Image: Concentration of protein complex formed
 Image: Concentration when protein complex formed

 Image: Concentration of protein complex formed
 Image: Concentration when protein complex formed

Antibody Monomer

CASE STUDY #1 Immunocapture Condition Optimization Linear response

CASE STUDY #1 Assay Performance

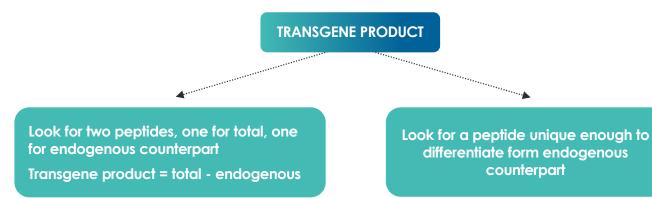
Inter-day A&P comparison of two drug candidates using the same signature peptide from the constant region

DRUG CANDIDATE #1

Analytical	Developeda	Reported Concentration (ng/m			
Run	Replicate	50	150	1500	3750
		51.0			
AR01	1	56.2	194 a	1820 ¤	4,340
	2 3	61.5	165	1,680	3,880
	3	56.3	184 a	1,500	4,230
	4 5	58.4	162	1,670	3,980
	5	62.1	167	1,580	4,500
	6	55.0	139	1,670	4,290
AR02	1	49.8	140	1,510	3,630
	2	45.1	149	1,450	3,610
	3	47.0	160	1,470	3,710
	4	48.6	147	1,420	3,570
	5	44.4	143	1,350	3,490
	6	45.8	152	1,310	3,340
AR03	1	44.7	133	1,380	3,580
7.1100		47.7	141	1,390	3,630
	2 3	45.5	129	1,400	3,610
	4	39.8	140	1,460	3,550
	5	44.4	143	1,440	3,800
	6	42.7	143	1,380	3,750
	0	42.7	145	1,500	5,750
	Mean	49.7	152	1,490	3,810
	%CV	13.6	11.4	9.23	8.69
	%DEV	-0.600	1.33	-0.667	1.60

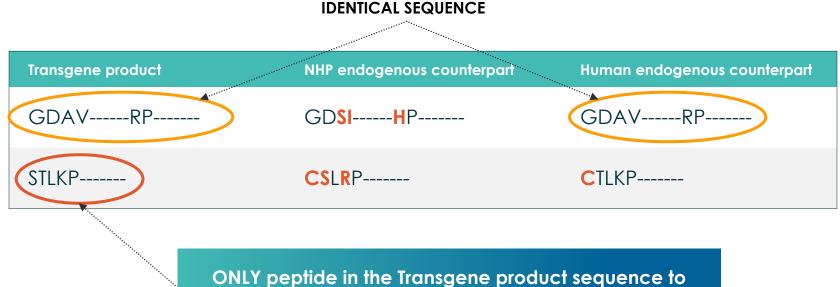
DRUG CANDIDATE #2

Analytical	Replicate	Repo	rted Conce	entration (ng	g/mL)
Run	Replicate	50	150	1500	3750
AR01	1	58.5	174	1,550	4,130
	2	56.3	166	1,610	4,170
	3	56.0	162	1,710	3,830
	4	58.1	164	1,470	4,370
	5	55.5	167	1,650	4,220
	6	62.5	162	1,500	3,990
AR02	1	47.5	140	1,610	3,750
	2	49.8	149	1,640	3,830
	2 3	55.8	138	1,590	3,720
	4	49.0	144	1,440	3,680
	5	50.0	143	1,410	3,640
	6	50.6	151	1,540	3,670
AR03	1	56.1	173	1,640	4,280
	2	57.5	170	1,640	4,140
	3	57.6	166	1,510	3,950
	4	51.9	160	1,530	3,970
	5	57.8	162	1,530	4,100
	6	52.1	163	1,470	3,950
	Mean	54.6	159	1,560	3,970
					-
	%CV	7.47	7.20	5.33	5.68
	%DEV	9.20	6.00	4.00	5.87


CASE STUDY #2 Therapeutic Transgene Expression Product

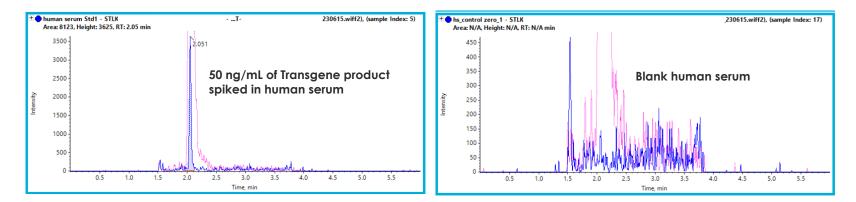
- Truncated version of a human soluble protein
- Method development in both NHP and human serum
- High sequence overlap compared to the endogenous counterpart, especially for human

CHALLENGE: Need signature peptides to differentiate from the endogenous counterpart

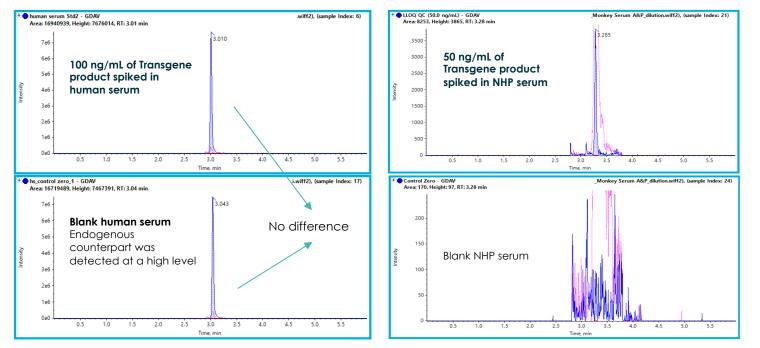

Strategy options

- 2 in 1 assay, costly
- Only works when transgene product and endogenous counterpart expressed in similar level

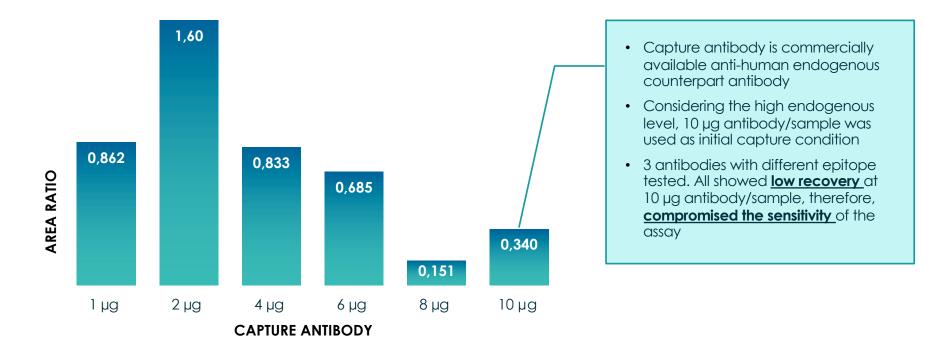
- High sequence overlap
- Limited peptide candidates



differentiate from the human endogenous counterpart

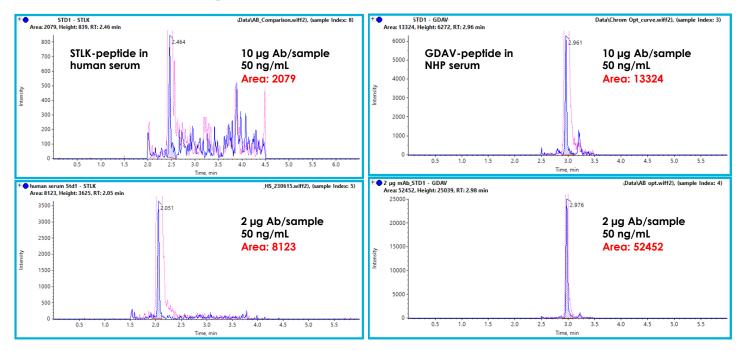

STLK-peptide selectivity in human serum

STLK-peptide is the **only** signature peptide can be used to distinguish the transgene expressed product from endogenous counterpart in human serum


GDAV-peptide selectivity in human and NHP serum

GDAV-peptide is the **most sensitive** signature peptide among all peptides tested. It was selected for the NHP study.

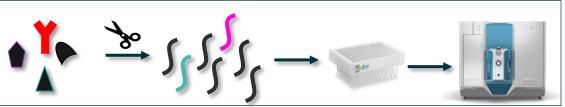
BioAgilytix 🎡

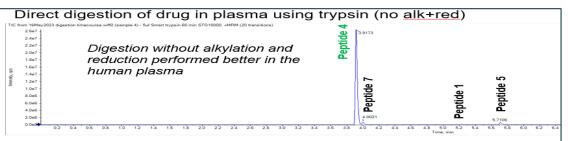

CASE STUDY #2 Capture Antibody Hook Effect

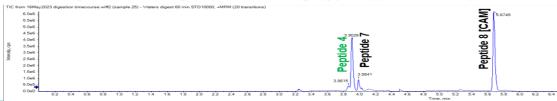
CASE STUDY #2 Capture Antibody Hook Effect

More sensitive with only 2 µg antibody/sample

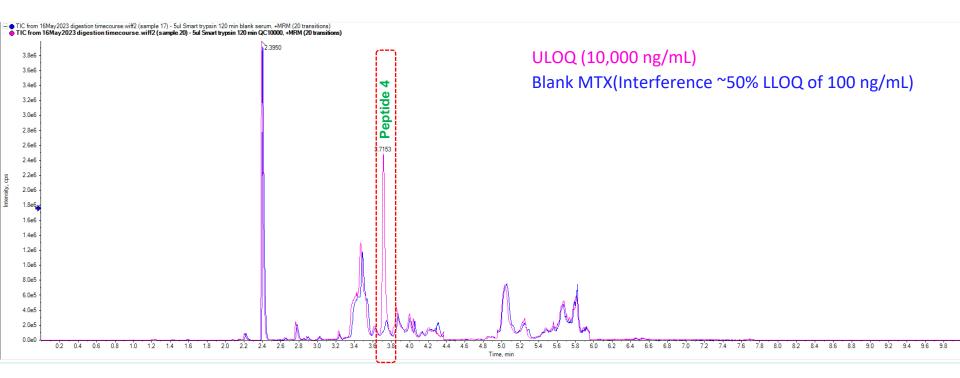
CASE STUDY #3


IgG1 Total PK Assay in Clinical Study


Workflow


Signature peptides from CDR region of IgG1 mAb therapeutic

Signature peptide candidates					
Tryptic peptide	Chain	#AA	BLASTp Human % identity		
Peptide 1	LC	26	81%		
Peptide 2	LC	26	88%		
Peptide 3	HC	19	89%		
Peptide 4	LC	9	89%		
Peptide 5	HC	15	90%		
Peptide 6	HC	26	92%		
Peptide 7	HC	21	93%		
Peptide 8	LC	24	96%		

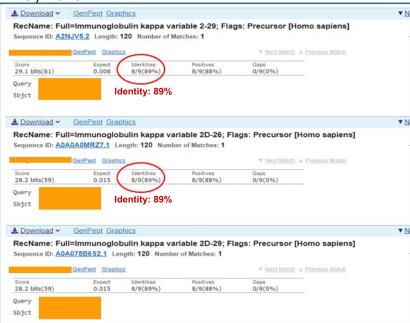


Direct digestion of drug in plasma using trypsin (with alk+red)

BioAgilytix 🐯

CASE STUDY #3 Interference in Blank Matrix

CASE STUDY #3 Troubleshoot Interference


Several troubleshooting events were attempted

- 1. SPE elution optimization
- 2. LC gradient optimization
- 3. Alternate MRM transitions
- 4. High resolution modes on Q1 and Q3
- 5. TCA precipitation
- 6. LC-HRMS
- 7. Revisit the database search

CASE STUDY #3 Revisit BLAST

May 2023

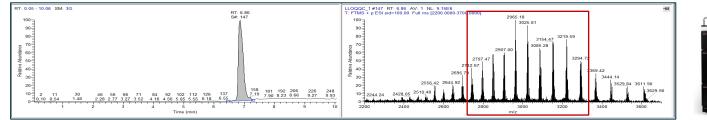
• Hypothesis on interference

July 2023

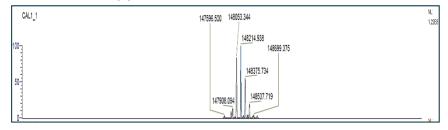
Sequence ID: QEP	27653.1 Lengt	th: 112 Number of	of Matches: 1			
	GenPept Graphi	ics		Vext Match	A Previous Match	
Score 32.0 bits(68)	Expect 0.012	Identities 9/9(100%)	Positives 9/9(100%)	Gaps 0/9(0%)		
Query Sbjct	lo	dentity: 100%	6			
L Download V	GenPept Gra	phics				
anti-SARS-CoV Sequence ID: WHF	-	-	of Matches: 1			
Sequence ID: WHF	-	th: 109 Number	Positives 9/9(100%)	▼ <u>Next Match</u> Gaps 0/9(0%)	Previous Match	
Sequence ID: WHE	278660.1 Leng GenPeet Graphi Expect 0.012	th: 109 Number	Positives 9/9(100%)	Gaps	Previous Match	
Sequence ID: WHF Score 32.0 bits(68) Query	278660.1 Leng GenPeet Graphi Expect 0.012	th: 109 Number	Positives 9/9(100%)	Gaps	Previous Match	
Sequence ID: WHE Score 32.0 bits(68) Query Sbjct	GenPept Grabh GenPept Grabh Contraction GenPept Gra in variable re	th: 109 Number	Positives 9/9(100%)	Gaps	Previous Match	
Sequence ID: WHF Score 32.0 bits(68) Query Sbjct Download ~ immunoglobul Sequence ID: QRC	GenPept Grabh GenPept Grabh Contraction GenPept Gra in variable re	th: 109 Number (CS (Jdentities 9/9(100%)) dentity: 100% phics (gijon, partial [I th: 214 Number	Positives 9/9(100%)	Gaps 0/9(0%)	Previous Match Provious Match	

Omicron boosting induces de novo B cell response in humans. Nature. 2023 May;617(7961):592-598. doi: 10.1038/s41586-023-06025-4. Epub 2023 Apr 3. PMID: 37011668.

CASE STUDY #3 Selectivity Assessment

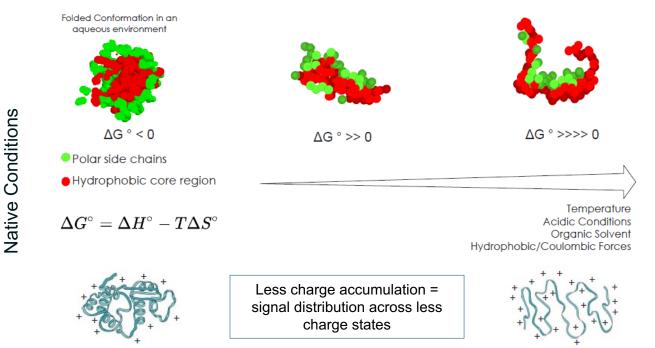

Matrix Lots	Interference based LLOQ of 250 ng/mL
Pooled BLK MTX	16%
BLK MTX Lot1	44%
BLK MTX Lot2	96%
BLK MTX Lot3	138%
BLK MTX Lot4	270%
BLK MTX Lot5	13%
BLK MTX Lot6	58%

- Selectivity failed with varying levels of interference
- This data strengthened the hypothesis.
- Next steps: Hybrid IA approach using Anti-ID where paratope and idiotope do not overlap → drug antigen and capture system donot compete = [unbound drug] + [bound drug] = [total drug]


CASE STUDY #4 IgG Therapeutic Intact Analysis by LC/HRMS

XIC Approach

Deconvolution Approach


Quantitation by I	ntact LC-HRMS Analysis
XIC approach	Deconvolution
Sum multiple charge states (typically 8-10)	Sum top intensity glycoforms (typically 2-3)
No proprietary algorithms applied post data acquisition	Deconvolution needs algorithms and differences exist in algorithms

- Application limited by sensitivity
- Dependent on ionization and charge state distribution (charge envelope)

BioAgilytix 🐯

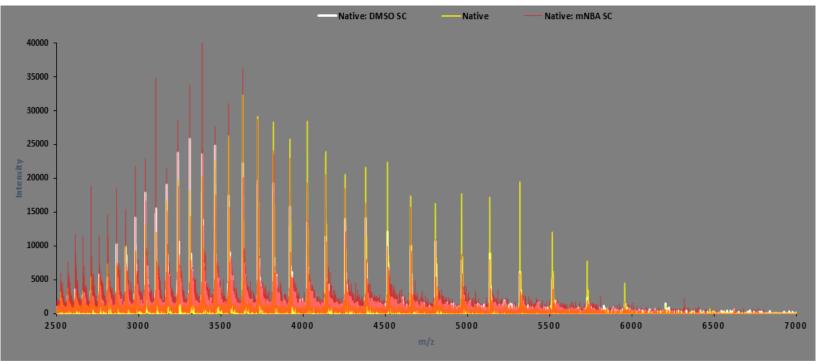
CASE STUDY #4 How To Boost Intact Sensitivity:

Native vs Denatured Conditions

Denatured

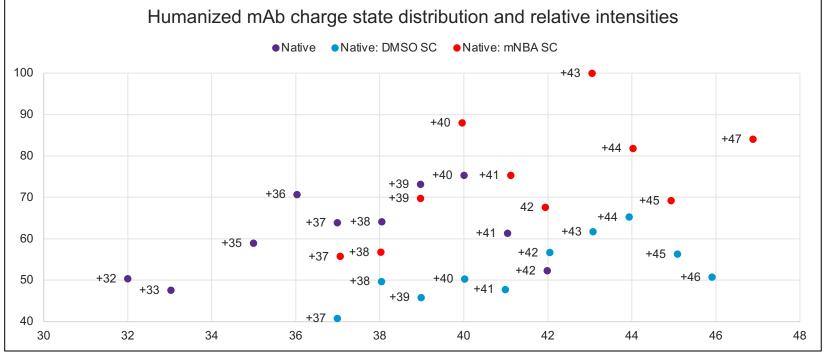
Conditions

CASE STUDY #4

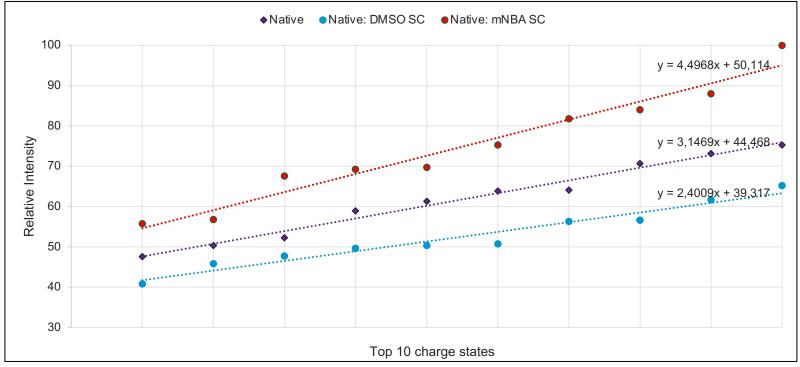

How To Boost Intact Sensitivity:

Can you supercharge your intact analysis?

- Supercharging agents increases positive/negative ion charging
- Supercharging agents are less volatile than the mobile phases
- Traditionally, supercharging agents are known to rescue the ionization suppression observed with TFA. Their role in intact biotherapeutics quantitation is not widely reported
- Few examples: m-nitrobenzyl alcohol (m-NBA), DMSO, sulfolane, formamide, etc.



Native Chromatography and Supercharging



CASE STUDY #4 Supercharging: Charge State and Relative Intensity

CASE STUDY #4 Supercharging: Increased Signal Intensity

Summary

- Bottom-up approach is commonly used strategy for the quantification of proteins. Hybrid approaches provide additional selectivity and sensitivity.
- Selecting the appropriate internal standard is crucial and is dependent on assay needs, availability and performance.
- It is critical to understand the context of use and what do you intend to measure, when designing your hybrid assay to apply appropriate capture system
- Sensitivity in intact mass analysis is dependent on charge state envelope, that can be modulated by use of supercharging agents. Need more data to assess its impact and application.
 BioAgilytix 🔅

Acknowledgments

BioAgilytix Large Molecule LC/MS Team

- Hua Huang, PhD
- Ben Nie, PhD
- Mark Bokhart, PhD
- Manjula Mummadisetti, PhD
- Christian Smith, MS

Sponsors for their collaboration

BioAgilytix Scientific Office

- Jim McNally, PhD
- Amanda Hays, PhD
- Lynn Kamen, PhD
- Michelle Miller, PhD
- Robert Nelson, PhD

Thank you

shashank.gorityala@bioagilytix.com

Facebook.com/bioagilytix
 Twitter.com/bioagilytix
 Linkedin.com/company/bioagilytix