

Case Study: Alternative Approach of Validating ADA Assays for Bispecific Antibodies

Lysie Champion

22-Sep-2023

What Is a Bispecific Antibody?

Bispecific antibodies (BsAbs) have been engineered to contain two distinct binding domains that can bind to two antigens or two epitopes of the same antigen simultaneously.

Bispecific Antibodies as Biotherapeutics

Bispecific Antibodies: Bioanalytical Challenges

- ADA: domain specificity characterization of the immune response Comparison of immunogenicity between moieties and related to novel / artificial structures (e.g. linker)
- Is domain specificity required? Regulatory recommendations:
 - FDA 2019 Guidance (Section IV.A.3):

"For multi-domain therapeutic protein products, the sponsor <u>may</u> need to investigate whether the ADA binds to specific <u>clinically relevant</u> domains in the protein."

• EMA 2017 Guideline (Section 7.5)

"The evaluation of this *(immune)* response, in particular, the characterization of the specificity of the induced antibodies is challenging and <u>may</u> require multiple assays for measuring immune responses to various moieties."

 \rightarrow risk assessment (safety – moiety with endogenous counterpart; clinical phase)

- If domain specificity characterization is required:
 - → Development of multiple domain characterization assays to measure immune responses to different domains of the molecules
 - \rightarrow Additional reagent generation:
 - domain-specific positive control
 - □ domain-specific inhibitors for the characterisation assay
 - \rightarrow Assay development and validation is more time/ resource consuming

ADA testing: the multi-tiered approach

Positive Control Strategies

Assay Requirements and Reagent Availability

Assay requirements (Drug-AB and Drug-AC)

- \leq 100 ng/mL senstivity
- Low free drug interference
- Likely low target interference

- Typical MSD bridging assay
- No need for sample pre-treatment like acid dissociation

Reagents	Drug-AB (Case Study 1)	Drug-AC (Case Study 2)
Positive controls	 mAb targeting anti-A arm (ADA-A) 	mAb targeting anti-A arm (ADA-A)
	 mAb targeting anti-B arm (ADA-B) 	mAb targeting anti-C arm (ADA-C)
Capture and Detection	 Biotin- and SulfoTag-Drug-AB 	Biotin- and SulfoTag-Drug-AC
Reagents for domain characterization	 Anti-A arm Anti-B arm Anti-A arm Anti-B arm 	 Anti-A arm Anti-C arm Anti-A arm

Case study 1 – Two Independent mAb Positive Controls

Case study 2 – One Pseudo-pAb Positive Control

Case study 2 – One Pseudo-pAb Positive Control

01 ADA Assay Development for Bispecfic Antibodies

Development Milestones for BsAb ADA Assay

- 1. Titration of capture and detection reagents
- 2. Selection of positive control
- 3. Testing sample pre-treatment if required (drug-tolerance)
- 4. Selection of MRD
- 5. Establishment of confirmatory and domain characterization assays
- 6. Evaluation of key assay performance
 - Cut points
 - Sensitivity
 - Selectivity
 - Drug (target) interference
 - (Stability)

Selection of Positive Control

Determination of Excess Inhibitor Levels in the Confirmatory and Characterization Assays

- Different PCs \rightarrow different excess inhibitor conc.
- Full inhibition

- Only one PC → similar excess inhibitor concentrations
- Partial inhibition (correlates with mAb binding affinities)

Final Assay Parameters

	Drug-AB	Drug-AC	
Assay format	MSD bridging assay (no acid dissociation)		
Positive controls	 Two positive controls strategy ADA-A for all assay tiers but Char_B ADA-B (LPC) for Char_B (LPC) 	 Antibody mix strategy (1 PC) ADA-A + ADA-C (1:1 mix) for all assay tiers Pseudo-polyclonal Ab 	
MRD (sample dilution)	25	50	
Provisory LPC (pLPC)	pLPC _A : 5 ng/mL pLPC _B : 10 ng/mL	pLPC: 5 ng/mL	

02

ADA Assay Validation for Bispecfic Antibodies

ADA Assay: Key Validation Parameters

	Drug-AB		Drug-AC
Positive control evaluated	ADA-A	ADA-B	mAb mix
Screening cut point	×		×
Confirmatory cut point	×		×
Characterization cut points (2 assays)	×		×
Robustsness	×		×
Sensitivity and titer precision	×	×	×
Selectivity	×	×	×
Hemolytic / lipemic interference	×	×	×
Precision	×	×	×
Hook effect	×	×	×
Free drug interference	×	×	×
Stability	×	×	×

> With mAb mix – simplified validation as most parameters analyzed with only 1 PC

Assay Sensitivity in Confirmatory and Characterization Assays

Drug-AB

	Confi	Char A	
PC	Titration of ADA-A		
Inhibitor	Drug-AB	Anti-A arm	
Sensitivity	~ 1 ng/mL		

Two LPCs:

- LPC (ADA-A): screening / confirmatory / Char A
- LPC (ADA-B): Char B

Assay Sensitivity in Confirmatory and Characterization Assays

- Despite the partial % inhibition in the Characterization assays the positive control could be diluted below the inhibition cut points.
- If sensitivities in confirmatory vs. characterization assays are too different, an additional LPC level (LPC_{Char}) may be introduced in the characterization assays

Conclusion

Pros and Cons of Using a Reference Antibody Mix to Detect ADA Against Bispecific Biotherapeutics

- Antibody not selected solely based on performance (Ab with highest affinity)
- A cocktail of reference Ab will target both arms of the bispecific Ab thereby mimicking a polyclonal immune response
- Life-cycle management of mAb (vs pAb): easier to control batch consistency, sufficient quantity for long-term supply
- Most validation parameters (e.g. sensitivity, drug tolerance, selectivity) tested only with one positive control → reduce validation experiments, minimize spiking
- Fulfils the requirements of positive control in all tiers of ADA assays.

Cons

Pros

• If the affinities of the antibodies are too different combined with a high inhibition cut point – false negative results may occur

_ ...

Conclusion

Traditional pAb can be successfully replaced by a mAb cocktail (pseudo-pAb)

mAb cocktail (pseudo-pAb) was also used as PC for NAb assay (case study 2 – Drug-AC)

Can be applied more broadly to other multi-domain drugs (e.g. ADC, fusion proteins), provided:

- The affinities of each domain-specific mAb are not too different (peggylated drug)
- Not too many domains \rightarrow partial inhibiton with narrow dynamic range (risk of false-negative)

Positive control strategy should be considered early on as this can influence the generation of reference antibodies

Thanks to Florian Bernet, Marita Zoma, Harley Williams, Petra Struwe

THANK YOU