

Integrating Bioanalysis and Biotransformation Strategies for Oligonucleotide Therapeutics

Craig Stovold, Mette Lund Pedersen and Xueqing Li

Integrated Bioanalysis / CVRM DMPK

09 June 2023

Why Oligonucleotide Therapeutics?

Potential to target any disease area

Oligonucleotide Therapeutics

ON ≠ small molecules

Same development principles but...

- Different screening cascades
- Different focus areas
- Different approaches

ON ≠ Biologics

- Regulatory landscape states "case by case" approach for oligonucleotide therapeutics with a focus on clinical
- Limited guidance for nonclinical studies and Biotransformation

Enzyme-mediated biotransformation of ASOs

Metabolism of gapmer ASO

- BT of ASOs mainly consists of hydrolysis of the phosphodiester linkages by nucleases (endo- or exo-, DNase or RNase)
- Nucleases are widely distributed in vivo and significant species differences are not expected
 - In vitro X-species study not needed
- Potential active metabolites (N-1, N-2)
 - should be identified early in project
- Conjugated ASOs: Intact conjugate will be cleaved off and metabolism of the conjugate will fall into its respective category for safety assessment.

Biotransformation strategy

Study/Activity	ASOs
In vivo metabolism (tox species, ss)	Yes
- Metabolite identification and profiling	Relevant tissues (liver and target tissues) in non-clinical tox species
In vitro-X species	No
In vivo metabolism in human (SAD/MAD) and non-clinical species at SS (incl. additional species to cover tox/repro/carc) - Metabolite identification and profiling	Yes Plasma and urine in human and non-clinical
To be available at EoPh2 meeting, BT strategy confirmed at HA interaction	species Safety assessment of human metabolites
Rodent/non-rodent radiolabelled ADME	No
Human radiolabel ADME	No
	Study/Activity In vivo metabolism (tox species, ss) - Metabolite identification and profiling In vitro-X species In vivo metabolism in human (SAD/MAD) and non-clinical species at SS (incl. additional species to cover tox/repro/carc) - Metabolite identification and profiling To be available at EoPh2 meeting, BT strategy confirmed at HA interaction Rodent/non-rodent radiolabelled ADME Human radiolabel ADME

5 the novel conjugating moiety and identify its related metabolites. FTIH – First in human, EoPh2 – End of Phase 2; HA – Health Authorities Slide courtesy of Mette Lund Pedersen and

Xue-qing Li

Biotransformation studies during development

6

Case Study: Biotransformation of a GalNAc conjugated ASO

Available BT samples from tox/safety studies

Steady state	Human	Monkey	Mouse	Rat	Rabbit
Plasma	Х	Х	Х	Х	Х
Urine	Х	Х			
Liver		Х	Х	Х	Х
Kidney		Х	Х		

- Metabolite ID and profiling were investigated in different species and matrices
- Metabolite ID and profiling in tissue from monkey and mouse were already available from ph1
 - Kidney was included to gain knowledge since this was one of the early ASO programs at AZ
 - Additional tissues may be included for alternative targeting conjugates
- Rat and rabbit are included to support carcinogenicity and repro studies

Case Study: Biotransformation of a GalNAc conjugated ASO Comparison across species and safety assessment

Health Authorities endorsed this strategy at the EoPh2, to support ph3 and NDA/MAA

09 June 2023

Biotransformation informs analyte selection and methodology for Bioanalysis

What do different bioanalysis assays measure?

- Hybridisation assays measure all potentially pharmacologically active forms of conjugated ASO
 - Need to verify equivalent measurement of conjugated and unconjugated ASO
- LC-MS assays need a reference standard for each species
 - Partially deglycosylated forms are difficult to synthesize and purify
- Consider Consistency of measured endpoint between non-clinical and clinical studies

Figure prepared by Cecilia Arfvidsson

Nonclinical Bioanalysis Strategy: GalNAc-ASO

Species	Matrix	Analyte	Technique	Validation Level	Rationale
Mouse & NHP	Plasma	Full length ASO species	Hybridisation Assay	Validated	Primary Measure of Exposure
Mouse	Liver and Kidney	Unconjugated ASO	LC-MS/MS	Tissue Assay	Tissue Accumulation
Mouse	Liver and Kidney	Unconjugated Surrogate ASO	LC-MS/MS	Tissue Assay	Benchmark exposure to clinical candidate
NHP	Liver and Kidney Cortex	Unconjugated ASO	LC-MS/MS	Tissue Assay	Determine Tissue half life and tissue to plasma ratio
NHP	Urine	Conjugated & unconjugated ASO	Hybridisation Assay LC-MS/MS	Validated	Determine renal clearance
NHP	Plasma	ADA (screening)	LBA	Trigger based on Tox findings	Informing immune- mediated Tox evaluation
Mouse	Liver***	Murine Target mRNA	RT-qPCR	Tissue Assay	Confirm evaluation of on on-target Tox
NHP	Liver***	NHP target mRNA	RT-qPCR	Tissue Assay	Confirm evaluation of on on-target Tox
Mouse	Tissues	Unconjugated ASO	LC-MS/MS	Tissue Assay**	Biodistribution
NHP	Tissues	Unconjugated ASO	LC-MS/MS	Tissue Assay**	Biodistribution

No plasma assay for murine surrogate ASO, tissue exposure only is used to benchmark exposure

** Liver assay used as basis for biodistribution study using tissues from GLP tox (Up to 8 tissues).

*** Target mRNA assay in NHP only run when *in vitro* activity is above a threshold level. Tissue selection may be driven by expression of target.

11

Early Clinical Bioanalysis Strategy: GalNAc-ASO

Species	Matrix	Analyte	Technique	Date Required	Rationale
Human	Plasma	Full length ASO species	Hybridisation Assay	PhI Start	Data used in dose escalation
Human	Plasma	Conjugated & unconjugated ASO	LC-MS/MS	End of PhI	May be used inform exposure:response relationship between Conjugated and Unconjugated ASO
Human	Urine	Conjugated & unconjugated ASO	LC-MS/MS	End of PhI	Confirmation of Urine exposure
Human	Plasma	ADA (3 Tier)	Immunoassay	Phase I End of Study	GLP Tox

- Push back on early inclusion of Immunogenicity Testing
 - ASO immunogenicity is typically low titer
 - HV immunogenicity may not be reflective of the target population
 - ASOs have an intracellular MoA if they get into the cell they can be active
 - Limited relevance of Nab assays
- May include opportunistic analysis of tissue samples when biopsy samples available

Illustrative Development Plan

Bioanalysis Key Considerations

- Some major analytes are not Test Item
 - Ensure appropriate characterisation of Bioanalytical Standards
 - Unconjugated ASO
 - Chain shortened metabolites
- Evaluation of cross-reactivity & selectivity
 - Equivalence of conjugated and unconjugated ASO
 - Cross-reactivity for chain shortened metabolites
 - Interference from chain shortened metabolites
- Long lead time for ADA positive control
 - Bank samples from Tox and early clinical studies
 - There may be limited relevance of HV immunogenicity to target indication

H-ECL Metabolite Cross Reactivity

Metabolite Standard	AZD7503 Measured Concentration (nM)	CV (%)	Cross-Reactivity (%)
Metabolite 1 (N-1 from 3'-end [15-mer])	0.624	2.7	41.6
Metabolite 2 (N-8 from 3'-end [8-mer])	<lloq< td=""><td>NC</td><td><0.7%</td></lloq<>	NC	<0.7%
Metabolite 3 (N-8 from 5'-end [8-mer])	<lloq< td=""><td>NC</td><td><0.7%</td></lloq<>	NC	<0.7%
Metabolite 4 (N-13 from 3'-end [3-mer])	<lloq< td=""><td>NC</td><td><0.7%</td></lloq<>	NC	<0.7%
Metabolite 5 (N-13 from 5'-end [3-mer])	<lloq< td=""><td>NC</td><td><0.7%</td></lloq<>	NC	<0.7%

- Each metabolite spiked as molar equivalent concentration to HQC
 - Concentration reported relative to AZD7503 standard curve
- Some cross-reactivity observed with theoretical n-1 metabolite but this is only present in very limited amounts in-vivo

H-ECL - Metabolite Interference

Metabolite	AZDXXXX Conc. (nM)	Metabolite Conc. (nM)	Mean Conc. (nM)	CV (%)	Bias (%)
	ULOQ - 2.00	20% - 0.400	2.00	2.3	0.0
Metabolite 1	ULOQ - 2.00	5% - 0.100	1.90	2.3	-5.0
3' N-1	LLOQ - 0.0100	20% - 0.00200	0.0110	4.2	10.0
	LLOQ - 0.0100	5% - 0.000500	0.0104	4.8	4.0
	ULOQ - 2.00	20% - 0.400	1.85	2.8	-7.5
Metabolite 2	ULOQ - 2.00	5% - 0.100	1.80	1.8	-10.0
3' N-8	LLOQ - 0.0100	20% - 0.00200	0.0106	8.5	6.0
	LLOQ - 0.0100	5% - 0.000500	0.00891	5.1	-10.9
	ULOQ - 2.00	20% - 0.400	1.82	2.0	-9.0
Metabolite 3	ULOQ - 2.00	5% - 0.100	1.80	3.7	-10.0
5′ N-8	LLOQ - 0.0100	20% - 0.00200	0.00977	12.1	-2.3
	LLOQ - 0.0100	5% - 0.000500	0.00960	4.1	-4.0
	ULOQ - 2.00	20% - 0.400	1.84	5.7	-8.0
Metabolite 4	ULOQ - 2.00	5% - 0.100	1.75	4.0	-12.5
N-13 from 3'-end	LLOQ - 0.0100	20% - 0.00200	0.00993	3.5	-0.7
	LLOQ - 0.0100	5% - 0.000500	0.00940	5.0	-6.0
	ULOQ - 2.00	20% - 0.400	1.90	7.3	-5.0
Metabolite 5	ULOQ - 2.00	5% - 0.100	1.90	7.1	-5.0
N-13 from 5'-end	LLOQ - 0.0100	20% - 0.00200	0.00930	5.1	-7.0
	LLOQ - 0.0100	5% - 0.000500	0.00868	4.6	-13.2

• 3' N-1 represents the "worst case scenario"

• Although cross-reactivity is observed there is no functional impact on the assay performance for full length oligonucleotides

H-ECL Assay Unconjugated + Conjugated ASO

QC Level (nmol/L)	Mean Concentration (nmol/L)	CV (%)	Bias (%)	TE (%)
LLOQ 50/50 Mix	0.0419	6.3	4.8	11.1
LQC 50/50 Mix	0.107	1.1	7.0	8.1
MQC 50/50 Mix	0.634	2.4	5.7	8.1
HQC 50/50 Mix	3.45	3.2	15.0	18.2
ULOQ 50/50 Mix	4.68	5.2	17.0	22.2

 Accuracy and Precision tested with both the unconjugated and conjugated ASO to ensure equivalent response per molar unit

• Assay may perform better in one orientation compared to the other

LC-MS/MS Assay Considerations

- Use of 34-S ASO as Internal Standard facilitates improved sensitivity and assay robustness
- Assay development needs to evaluate for charge state overlap
- If needed ensure chromatographic separation
- Murine ASO often analysed using human ASO SIL
- No inclusion of GalNAc-ASO in tissue assays

Bioanalysis Endpoints

Plasma

- Initial rapid plasma clearance due to fast distribution to tissues
- Long terminal half-life

Urine

- Low amount excreted in urine
- Indicates low renal clearance

Tissue

- Highest exposures in target organ
- Long tissue half life
- Tissue accumulation

Bioanalysis informs concentration ranges and target tissues for Biotransformation studies

Anti-ASO Immunogenicity Assay

- Sequential format direct assay
- Anti-ASO antibodies are captured to ASO immobilised on a microtitre plate and detected using Protein A/G-HRP conjugate
- No evidence of prozone effect
- Very sensitive assays with good drug tolerance
- Consider the clinical relevance of low ADA titers relative to drug concentration

Assay Format

Working closely together, Biotransformation and Bioanalysis informs a comprehensive data package delivering PK, immunogenicity and ADME data required for regulatory interactions

Acknowledgements

Questions?

Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com

