

Bioanalytical challenges for analysis of oligonucleotides with LC-MS/MS

Emmanuel Njumbe Ediage, PhD Development Bioanalysis, Janssen R&D, Beerse BELGIUM

Colonic mucosa highlighted by Picro-Mallory trichrome special stain, from an exploratory study for Pulmonary Arterial Hypertension (PAH)

EBF Focus Workshop 9thJune 2023

Credit: Vini Carreira, Pathology, Preclinical Sciences & Translational Safety

Janssen Research & Development, LLC ©2022 JRD, LLC

PHARMACEUTICAL COMPANIES OF Johnson Johnson

Outline

Introduction

- Therapeutic oligonucleotide (OGN) landscape and available -**Bioanalytical platforms**
- LC-MS/MS workflow for analysis of OGN

Bioanalytical challenges in OGN analysis 2

- Case study 1:Purity/interference/cross talk evaluation
- Case study 2: Matrix effect and choice of Internal standard
- Case study 3: Carryover mitigation strategy and system reproducibility -

3 Extraction of OGN from biological samples using LNA Probes + LC-MS/MS analysis

Therapeutic OGN landscape and available Bioanalytical platforms

5'

Therapeutic Drugs

- **ASOS** (ssDNA/RNA, **14-25 nt**)
 - Structural design/modifications: gapmers, PMO, PS, 2' MOE,...
 - Approved drugs: fomivirsen, nusinersen,
- siRNAs (dsRNA 2x 20-25 nt)
 - antisense strand (AS) or guide strand
 - sense strand (SS) or passenger strand
 - Structural modifications: PS, 2'F/OMe, conjugation,...
 - Approved drugs: patisiran (2018), givosiran (2020), inclisiran (2021),....
- Other oligo modalities: example mRNA therapeutics

Preclinical Sciences & Transitional Safety (PSTS)

Bioanalytical Platforms for OGN quantification

	LC-MS	LC-Fluorescence	hELISA	
Format	LC-HRMS LC-MS/MS	Hybridization Chromatography	Hybridization	Stem-loo
Sensitivity	0.5-1 ng/mL	0.1-1 ng/mL	High, 10 pg/mL	Highest,
Specificity	High	Mid	Low	Low
Metabolite detection	Yes	Yes, but limited identification	No	No
Reagent	Internal standard (Analog)	Custom DNA/PNA	Custom probe	Custom Primer
Challenges	Chromatography, Ionization, Sensitivity Ruggedness	Probe design, Specificity	Probe design, Specificity	Primer d Specifici
Assay development	Fast, days-weeks	Slow, weeks-months	Slow, weeks- months	Medium,
Regulatory BA	Yes (SMOL) Givosiran, Lumasiran, and Inclisiran	Yes (SMOL) Patisiran	Yes (LBA guidance)	Not rout

PCR

op qPCR

pg/mL

Probe and

lesign, ity

weeks

tine

LC-MS/MS workflow for the analysis of OGNs

Skin cells at 20x magnification

Johnson Johnson

LC-MS Assay for Oligonucleotide Therapeutics

siRNA IP-RP chromatography

LC parameter	Shimadzu LC 20AD	
Column	DNA Pac RP (50 x2.1 mm)	
Flow rate	0.25 mL/min	
MP A	47.3 mM HFIP(0.5%)/ 12.2 mM DMBA (0.2%)	
MP B	CH ₃ CN/IPA (95/5)	
gradient	2% ->50 %B in 2 min	
Rinse solution	Water/MeOH/DMBA (93/5/2, V/V/V)	

Time (min)	% A	% B
0.00	98	2
2.00	98	2
4.00	50	50
4.01	5	95
7.00	5	95
7.01	98	2

Liver homogenate 5 µg/mL

MS parameter	Sciex 6500+
CAD	8
CUR	30
GS1	80
GS2	50
DP and CE	Analyte/transition dependent

	MRM transitions
SS1	793.5 (11-) > 438; 793.5 > 358
AS1	685.8 (10-) > 334; 762.1 (9-) > 604
IS	634.1 (8-) > 617.1

- AS1: antisense strand 1
- SS1: sense strand 1

4.5

IP-RP chromatography with an siRNA

Only the antisense strand is quantified, and concentration (ng/ml or ng/g) reported as **duplex equivalent** \succ

PHARMACEUTICAL COMPANIES OF Janssei (Johnson 4 Johnson

LCMS separation of truncated metabolites of siRNAs

> Adapting chromatography: slow gradient 1-15% B over 20 min

Both siRNA have same number of phosphorothioate (OPS) linkages

Diastereomeric selectivity: C>G>A>T

PHARMACEUTICAL COMPANIES OF Cohnson & Cohnson

Bioanalytical challenges in OGN analysis

Case study 1:

Purity/interference/cross talk evaluation

Skin cells at 20x magnification

Rationale for purity/interference evaluation

- A MUST for MS/MS analysis with co-elution of multiple OGN species (drug + metabolites) \geq and impurity is expected
- OGNs show multiple charge states with Na/K adducts,
 - Similar m/z values can be expected

S [M-9H+K]8-

S [M-9H+Na]8-

<u>Rationale for purity/interference evaluation(2)</u>

- The use of structural analogues (e.g siRNA or ASO) as internal standard in discovery phase \succ projects
 - Check the contribution of the analogue **IS to the LLOQ of OGN unchanged drug**
 - Check the contribution of the OGN drug to the response of the analogue IS
- In multi-analyte analysis:
 - The possibility to combine 2 (or more) siRNA's/ASO in 1 calibration curve

Our internal Sequence of events (Internal process)

- > **On-the-column Tuning** of the different OGNs (Q1) and select the 3-4 most intense charge states in Q1;
- \succ Via infusion, optimize the other MS/MS parameters
- > Of each charge state search for the most intense product ions
- Prepare standard solutions of the same concentration
- Inject the standard solutions separately and monitor the other transitions

Example Purity/interference check

Acceptance criteria: % impurity should be < 2% \triangleright

Standards were injected at equimolar concentrations \succ

	AS1	% impurity	AS1	% impurity	AS1	% impurity	AS1	% impurity
	<u>(-10a)</u>		<u>(-10b)</u>		<u>(-10c)</u>		<u>(-9a)</u>	
Duplex1	7.96E+05		5E+05		4E+05		8E+05	
Duplex1	7.54E+05		5E+05		4E+05		8E+05	
Duplex1	7.74E+05		5E+05		4E+05		8E+05	
As1 (n-1)'5	19668	2.5	18134	3.4	5799	1.5	17653	2.2
As1 (n-1)'3	20949	2.7	20527	3.9	10834	2.9	7713	0.9
As1 (n-2)'5	4838667	624.8	9E+05	176.9	1E+05	39.1	12216	1.5
As1 (n-2)'3	133242	17.2	1787 1E+05	23.5	76500	20.4	4133	0.5
16MER-OPS	1061 720	0.1	2923	0.5		0.0		0.0
	Duplex1 I Duplex1 I Duplex1 I As1 (n-1)'5 I As1 (n-2)'5 I As1 (n-2)'3 I I I As1 (n-2)'3 I I I <	AS1AS1Duplex1Duplex1Duplex1As1 (n-1)'5As1 (n-2)'5As1 (n-2)'5	AS1% impurityDuplex1JJ.96E+05Duplex17.96E+05J.96E+05Duplex17.74E+05J.9668As1 (n-1)'5J196682.5As1 (n-1)'5J209492.7As1 (n-2)'5JAs38667624.8As1 (n-2)'5J13324217.2As1 (n-2)'5J1061IIGMER-OPSI7200.1	AS1% impurityAS1Louplex1IIIIDuplex1I7.96E+05IIDuplex1I7.96E+05IIDuplex1I7.74E+05IIAs1 (n-1)'sIIIIAs1 (n-1)'sIIIIAs1 (n-1)'sIIIIAs1 (n-1)'sIIIIAs1 (n-1)'sIIIIAs1 (n-1)'sIIIIIIIIIAs1 (n-1)'sII <td< td=""><td>Mash% impurityAsh% impurityLouplex1II<!--</td--><td>MashMashMashMashMashMashMashMashAshAshAshAshAshAshAshAuplex1AAshAshSE+05Ash4E+05Auplex1AAshSE+05SE+054E+054E+05Auplex1AAshSE+05SE+054E+054E+05Auplex1AAshSE+05SE+054E+054E+05Auplex1AAshSE+05SE+054E+054E+05Auplex1AAshSE+05Intel S4E+05Auplex1AAshSE+05Intel S4E+05Auplex1AAshSE+05Intel S4E+05Auplex1AAshSE+05Intel S4E+05Ash (n-1)'SAAnotAshSE+05Intel SAsh (n-1)'SAAnotAnotAnotIntel SAsh (n-2)'SAAshSexAnotIntel SAsh (n-2)'SAAshSexAnotIntel SAsh (n-2)'SAAshAshAnotIntel SAsh (n-2)'SAAshAnotIntel SIntel SAsh (</td><td>AS1AS1Monophic impurityAS1Monophic impurityAS1Monophic impurityDuplex12C-10a)2SE+054E+054E+05Duplex17.96E+055E+054E+054E+054E+05Duplex17.74E+055E+054E+054E+054E+05As1 (n-1)'s7196682.553.465E+054E+05As1 (n-1)'s1196682.553.813.445.7991.53As1 (n-1)'s22.09492.7742.05273.941.08342.94As1 (n-1)'s12.09492.7741.0141.0141.0141.014As1 (n-1)'s11.33262624.889.9E+051.7641.1641.164As1 (n-2)'s11.332421.7241.1641.1641.1641.1641.164As1 (n-2)'s11.332421.7241.1641.1641.1641.1641.164As1 (n-2)'s11.1611.1641.1641.1641.1641.164As1 (n-2)'s11.1611.1641.1641.1641.1641.164As1 (n-2)'s11.1641.1641.1641.1641.1641.164As1 (n-2)'s11.1641.1641.1641.1641.1641.164As1 (n-2)'s11.1641.1641.1641.1641.1641.164As1 (n-2)'s11.1641.1641.1641.1641.16</td><td>AS1Mo impurityAS1Mo impurityAS1Mo impurityAS1Luplex1Duplex1Duplex1Duplex1</td></td></td<>	Mash% impurityAsh% impurityLouplex1II </td <td>MashMashMashMashMashMashMashMashAshAshAshAshAshAshAshAuplex1AAshAshSE+05Ash4E+05Auplex1AAshSE+05SE+054E+054E+05Auplex1AAshSE+05SE+054E+054E+05Auplex1AAshSE+05SE+054E+054E+05Auplex1AAshSE+05SE+054E+054E+05Auplex1AAshSE+05Intel S4E+05Auplex1AAshSE+05Intel S4E+05Auplex1AAshSE+05Intel S4E+05Auplex1AAshSE+05Intel S4E+05Ash (n-1)'SAAnotAshSE+05Intel SAsh (n-1)'SAAnotAnotAnotIntel SAsh (n-2)'SAAshSexAnotIntel SAsh (n-2)'SAAshSexAnotIntel SAsh (n-2)'SAAshAshAnotIntel SAsh (n-2)'SAAshAnotIntel SIntel SAsh (</td> <td>AS1AS1Monophic impurityAS1Monophic impurityAS1Monophic impurityDuplex12C-10a)2SE+054E+054E+05Duplex17.96E+055E+054E+054E+054E+05Duplex17.74E+055E+054E+054E+054E+05As1 (n-1)'s7196682.553.465E+054E+05As1 (n-1)'s1196682.553.813.445.7991.53As1 (n-1)'s22.09492.7742.05273.941.08342.94As1 (n-1)'s12.09492.7741.0141.0141.0141.014As1 (n-1)'s11.33262624.889.9E+051.7641.1641.164As1 (n-2)'s11.332421.7241.1641.1641.1641.1641.164As1 (n-2)'s11.332421.7241.1641.1641.1641.1641.164As1 (n-2)'s11.1611.1641.1641.1641.1641.164As1 (n-2)'s11.1611.1641.1641.1641.1641.164As1 (n-2)'s11.1641.1641.1641.1641.1641.164As1 (n-2)'s11.1641.1641.1641.1641.1641.164As1 (n-2)'s11.1641.1641.1641.1641.1641.164As1 (n-2)'s11.1641.1641.1641.1641.16</td> <td>AS1Mo impurityAS1Mo impurityAS1Mo impurityAS1Luplex1Duplex1Duplex1Duplex1</td>	MashMashMashMashMashMashMashMashAshAshAshAshAshAshAshAuplex1AAshAshSE+05Ash4E+05Auplex1AAshSE+05SE+054E+054E+05Auplex1AAshSE+05SE+054E+054E+05Auplex1AAshSE+05SE+054E+054E+05Auplex1AAshSE+05SE+054E+054E+05Auplex1AAshSE+05Intel S4E+05Auplex1AAshSE+05Intel S4E+05Auplex1AAshSE+05Intel S4E+05Auplex1AAshSE+05Intel S4E+05Ash (n-1)'SAAnotAshSE+05Intel SAsh (n-1)'SAAnotAnotAnotIntel SAsh (n-2)'SAAshSexAnotIntel SAsh (n-2)'SAAshSexAnotIntel SAsh (n-2)'SAAshAshAnotIntel SAsh (n-2)'SAAshAnotIntel SIntel SAsh (AS1AS1Monophic impurityAS1Monophic impurityAS1Monophic impurityDuplex12C-10a)2SE+054E+054E+05Duplex17.96E+055E+054E+054E+054E+05Duplex17.74E+055E+054E+054E+054E+05As1 (n-1)'s7196682.553.465E+054E+05As1 (n-1)'s1196682.553.813.445.7991.53As1 (n-1)'s22.09492.7742.05273.941.08342.94As1 (n-1)'s12.09492.7741.0141.0141.0141.014As1 (n-1)'s11.33262624.889.9E+051.7641.1641.164As1 (n-2)'s11.332421.7241.1641.1641.1641.1641.164As1 (n-2)'s11.332421.7241.1641.1641.1641.1641.164As1 (n-2)'s11.1611.1641.1641.1641.1641.164As1 (n-2)'s11.1611.1641.1641.1641.1641.164As1 (n-2)'s11.1641.1641.1641.1641.1641.164As1 (n-2)'s11.1641.1641.1641.1641.1641.164As1 (n-2)'s11.1641.1641.1641.1641.1641.164As1 (n-2)'s11.1641.1641.1641.1641.16	AS1Mo impurityAS1Mo impurityAS1Mo impurityAS1Luplex1Duplex1Duplex1Duplex1

Case study 2:

Matrix effect and choice of analogue internal standard in Discovery projects

Skin cells at 20x magnification

pharmaceutical companies of Johnson Johnson

Performance of analogue ASO IS: incurred samples vs calibrators

- Choice is limited to analogue antisense OGN (ASO) and siRNA with 100% sequence dissimilarity compared to the \geq analyte to be quantified
- @Janssen; historically, started with ASO 16mer OPS as IS. Used to support all projects \geq
- We observed matrix-dependent IS response with brain and tissue homogenate. IS added prior to SPE extraction \geq

Fig .1 incurred samples and the calibrators were prepared with **separate protocols**

Sample clean-up with Clarity OTX SPE 96

extraction with Clarity OTX plate was

samples and calibrators prepared in RIPA

Note: RIPA may contain SDS which might Recommended to use 10 mM EDTA as

PHARMACEUTICAL COMPANIES OF Cohnson + Cohnson

Performance of analogue lipid conjugated ASO vs siRNA

Fig .4 a and b 16MER-OPS ASO IS and siRNA IS in spleen homogenates

Preclinical Sciences & Transitional Safety (PSTS)

-10

10

30

50

70

Batch to batch and matrix evaluation is required to guide decision \succ

90

Case study 3:

Carryover mitigation strategy and system reproducibility

Skin cells at 20x magnification

Carryover Mitigation Strategy and System Reproducibility

se study: Carryover observed during study sample analysis					
		Calculated Conc (ng/ml)	<u>% Acc</u>	<u>JNJ-1 (-9g)</u>	% CarryOver w
Sample ID	Sample type			Peak Area	ULOQ
LLOQ	Standard	21.1	105.5	9783	
ULOQ	Standard	11300	113.2	3071974	
CO	Unknown	98		31096	1.01
CO	Unknown	40.9		14785	0.48
CO	Unknown	18.8		8521	0.28
CO	Unknown	14.4		7086	0.23
CO	Unknown	13.1		6671	0.22

After days of troubleshooting (analytical column, tubing's, mobile phase) the CO issue was resolved \geq

1. Carryover mitigation:

- Compound dependent but also different LC systems tend to have different CO $-- \rightarrow$ next slide \checkmark
- \checkmark Use appropriate column fittings to avoid dead volumes: pre-flushing is recommended
 - NanoViper (Thermo Scientific) (pH limited recommended not to use Infront of the column)
 - SecurityLINK (PEEKSIL) finger fitting (Phenomenex),
 - PEEK tubing. New tubing gives distorted peaks. Equilibration with sample extract is needed

Preclinical Sciences & Transition.

% CarryOver w.r.t
LLOQ
317.9
151.1
87.1
72.4
68.2

<u>Carryover mitigation strategy and System reproducibility (2)</u>

1. Carryover mitigation (continuation):

- Totally Inert UHPLC system. Is it needed for biological samples or Myth Is stainless steel OK? \checkmark
- Backflush the analytical column with Mobile phase B prior to use \checkmark
- BioInert analytical columns and frit \checkmark
 - -Acquity Premier BEH C18 (Waters), pH 1-12
 - -YMC Triart C18, 300Å (YMC): pH 1-12 + temperature recommendation
 - BioZen Oligo (Phenomenex), core shell technology: pH 1-9
 - DNAPac[™] RP (Thermo Scientific) (Not Bio inert). Polymeric column, very stable over pH9

2. System reproducibility

- **Equilibrate** by injecting high calibrator standard (1/4 ULOQ) extract until a stable signal is reached. \checkmark DNAPac columns may need more injections
- **Use a dedicated** LC-MS/MS system: keep it on constant low flow \checkmark
- Mitigate drift in MS response by keep mobile phase(s) on ice during analytical run especially mobile \checkmark phase containing HFIP and ion pairing reagent
- Use mobile phase solvent Debubbler if needed \checkmark

Lessons learnt

- Interference evaluation is critical when setting up bioanalytical methods for multiple analytes 1.
- 2. RIPA as **homogenization buffer** is not our preferred choice since it often result in poor MS response due to signal suppression
- 3. Combination of structural analogues IS provide more flexibility to select the best IS post analysis to mitigate matrix effect. But interference check must be performed
- 4. Analogue siRNA performed better than an analogue ASO. Most likely related to differences in ionisation efficiency between the ASO and siRNA. Is it sequence dependent?
- 5. Other analogues with close sequence similarity to the target analyte(s) would be preferred (if available)
- 6. Carryover is analyte dependent: phosphorothioate (OPS) modified and lipid conjugated OGN tend to show more carryover
- Use of Bioinert UHPLC systems and columns can help mitigate carryover of OGN 7.
- Minimize dead volumes created by incompatible column fittings and tubing's 8.
- Carryover investigation is an art and should be approached systematically 9.

Extraction of OGN using LNA probes

Agrawal et al. (2023) submitted to Bioanalysis journal

Preclinical Sciences & Transitional Safety (PSTS)

Skin cells at 20x magnification

<u>Hybrid siRNA LC-MS/MS Analysis Workflow</u>

Agrawal et al. (2023) Submitted for publication. Sips et al, Bioanalysis 2019; Li et al, Anal Chem 2020

Probe with higher affinity

Heat treatment to un-anneal the double

Optimize sample/probe ratio

PHARMACEUTICAL COMPANIES OF

Johnson Johnson

Optimization of Probe Amount and Sample Volume

Agrawal et al. (2023) submitted to Bioanalysis journal

Adding > 90 pmolprobe/sample did not significantly increase siRNA recovery in general

Using 90 pmol probe, SIR-1 response increases proportionally with sample aliquot volume from 25 μ L to 100 μ L at both 100 ng/mL and 10,000 ng/mL

Using 90 pmol probe, SIR-2 response increases proportionally with sample aliquot volume from 10 μ L to 50 μ L at both 100 ng/mL and 10,000 ng/mL

Capture Probes can cause Interference Peaks for Analytes

LNA probe that was direct complement to SIR-2 antisense strand with C6 spacer had interference peak for all MS/MS transitions evaluated

- Peak resolvable from analyte peak by changing LC gradient, but concerns of inter-column variability in retention time
- Addition of mass to probe using TEG spacer (C15 v/s C6) caused a different interference peak to be observed
- Adding an additional nucleotide to the 3' end and using C6 spacer shifted probe mass sufficiently to eliminate interference peak
- Adding an additional nucleotide to the 3' end and using TEG spacer did not aid with removing the interference peak
- Interference peak not exactly the same Q1 mass as antisense strand (0.2 – 0.7 Da difference based on HRMS analysis)
 - Mass shift is easily resolved on HRMS system
 - Mass shift cannot be resolved on MS/MS system

Method Performance Assessment for FLP-1 (25 µL Aliquot / Sciex API 5000 MS)

OC Level	Nominal Conc	Fr	esh Extract	7-day Reinjection Reproducibility	1		
	(ng/mL)	%Bias (%CV)	Recovery (%)	Matrix Factor	%Bias (%CV)	2	
LLOQ QC	25.0	7.13 (25.1)	N/A	N/A	N/A	3	
LQC	75.0	17.1 (9.46)	34.9 ± 2.63	0.90 ± 0.09	-2.14 (12.4)	4	
LMQC	400	22.1 (7.21)	N/A	N/A	23.8 (3.02)		
MQC	4000	13.6 (10.4)	23.0 ± 1.44	1.02 ± 0.02	21.3 (9.21)	5	
HQC	8000	12.4 (14.5)	22.7 ± 3.60	1.04 ± 0.03	19.4 (15.3)	6	

Lot

Conclusions: Use of LNA probes for sample extraction

1. First known assay for analyzing siRNA analytes using LNA probes for sample extraction/clean-up

2. The assay is a specific and sensitive hybrid LC-MS siRNA assay which uses less sample volume, making it highly suitable in preclinical analysis

3. LLOQ and linear range in mouse plasma were:

 \geq siRNA-1 from 25.0 – 10000 ng/mL using a 25 µL aliquot

 \geq siRNA-2 from 0.500 – 500 ng/mL using a 10 µL aliquot

Acknowledgement

- Luc Sips
- Doriane Lorendeau
- Karan Agrawal
- Lieve Dillen
- Wenying Jian
- Tom Verhaeghe
- Bioanalytical team

- Jan Snoeys
- Frank Jacobs
- Marijke Somers
- Lujia Zhou
- Kristof Van Kolen

pharmaceutical companies of Johnson Johnson 28

Gene silicing - mode of action

https://www.researchgate.net/publication/332881818/figure/fig1/AS:755726863593477@1557190733922/Mechanisms-of-oligonucleotides-Notes-A-ASOs-use-RNase-H-mediated-mRNAdegradation_W640.jpg creative common license

