

Quantification of Synthetic DNA Aptamers in Plasma with qPCR: Feasibility & Method Development

Carrie A. Vyhlidal, Ph.D. 08-JUN-2023

confidential

Aptamers as Therapeutics

- ssDNA or ssRNA 20-100 nucleotides in length
- Highly folded tertiary structure
- Bind to target molecules with specificity and sensitivity similar to antibodies
 - "Chemical antibodies"
- Advantage over antibodies include:
 - Small size
 - Flexible with rapid synthesis
 - Lower immunogenicity

- Targets include small molecules, metal ions, proteins, viruses, and whole cells
- Aptamer therapeutics can have differing functions
 - Antagonist for blocking disease targets (i.e. receptor-ligand interactions)
 - Agonist to activate targets
 - Cell-specific aptamers to serve as carrier for therapeutic agents

Determine the feasibility of development of a PCR-based method to detect and quantify synthetic DNA aptamers of 40 to 65 nucleotides in length in canine plasma

OBJECTIVE

General Approach

Detection of synthetic single-stranded, short DNA aptamers (six) of 39 to 64 nucleotides via QPCR using primers with 5' extensions on the QuantStudio 7 Pro with SYBR green detection (double-stranded DNA intercalating dye).

Preliminary Feasibility of the Approach

KCQS

- Four aptamers
 - 39 nt
 - 40 nt
 - 50 nt
 - 51 nt
- Three concentrations and no template control (NTC)
 - 10⁸ copies/μl
 - 10⁶ copies/μl
 - 10² copies/µl
- Three annealing temperatures
 - 58°C
 - 60°C
 - 62°C
- Vendor recommended primer concentrations and cycling conditions
- 40 cycles followed by melt curve

- Three out of four synthetic aptamers successfully amplified at all conditions tested.
 - No signal with 51 nt aptamer at any concentration of input or condition
- Signal in NTC
 - Melt curve indicative of primerdimer
- Approach feasible with optimization

Temperature (°C)

35

Melt Curve Plot (Derivative)

Optimization of Amplification of 40 nt aptamer KCOS

- Published aptamer and primer set for SYBR green detection (Nucleic Acid Therapeutics 25(1):11-19 (2015)
- Temperature gradient (58-65°C) to identify optimal annealing temperature
- Primer titration (100 nM-400 nM) for optimal primer concentrations
- 40 cycles of amplification followed by melt curve analysis
- Optimized annealing temperature and primer concentrations successfully eliminated signal in NTC
- Preliminary sensitivity 500 copies/reaction

Target: atamer3064-300nm Slop: -3.608 Ra: 0.999 Y-Inter: 38.666 Eff%: 89.293 Error: 0.032

Quantification of 39 nt aptamer

- Reaction condition optimization
 - Temperature gradient
 - Primer titration
- Quantification down to 50 copies/reaction with Relative error <25%
- Signal in no template control (NTC) wells with C_t>35 cycles
- Additional assay optimization to reduce or eliminate background signal
- Concurrent re-design of primers with more favorable heterodimer formation properties

kcasbio.com

Quantification of 50 and 51 nt aptamers

- Reaction condition optimization
 - Temperature gradient
 - Primer titration
- Aptamer of 51 nucleotides did not amplify under any conditions
- Results of 50 nucleotide aptamer:
 - Consistent signal in NTC wells with C_t values between 29 and 33 cycles
 - Background amplification interfering with assay that is shifting signal in wells with 100 copies/µl
- Re-design primers for both aptamers with more favorable heterodimer formation properties

 Target:
 100/100-H4-terminal
 Slop:
 3.364
 R³:
 0.986
 Y-Inter:
 36.207
 Eff%:
 98.281
 Error:
 0.143

 Target:
 200/200-H4-terminal
 Slop:
 3.158
 R³:
 0.962
 Y-Inter:
 35.02
 Eff%:
 107.318
 Error:
 0.223

Quantification of 63 nt Aptamer

- Reaction condition optimization
 - Temperature gradient
 - Primer titration
- Linear quantification down to 50 copies/reaction
 - Relative error <15%
 - Total error <25%
- Optimized assay eliminated all background signal in NTC
- Optimized reaction efficiency 94%

Aptamer Recovery from Canine Plasma

- Canine plasma spiked with 63 nt aptamer ٠
 - 2000 copies/mL •
 - 10000 copies/mL
 - 50000 copies/mL .
 - Negative control •
- Plasma (1 mL) processed with QIAamp • Circulating nucleic acid kit using protocol for purification of microRNA
- Elution in 50 μ l buffer •
- Performed QPCR using 5 µl of eluted DNA •
- Recovery of aptamer low with QIAamp • protocol (<30%)
- Can aptamer be detected in plasma ٠ without purification?

	50000	10000	2000
	copies/ml	copies/ml	copies/mL
Expected copies/µl	1000	200	40
for 100% recovery	copies/μl	copies/μl	copies/μl
Actual	298 ± 2.63 copies/μl	36.3 ± 0.62 copies/μl	10.9 ± 1.55 copies/μl
% Recovery	29.8%	18.2%	27.3%

Direct detection of 63 nt aptamer in plasma

- Dilution of 63 nucleotide aptamer in 100% plasma
- Used 5 µl per reaction for final plasma concentrations of 25%
- Input of sample in 100% plasma significantly effects amplification
- Y-intercept shifted by 1.5 C_t
- Slopes of standard curves remain similar
- High total error observed for reactions with plasma concentrations of 25%

 Target: TLS11a/TE
 Slop: -3.535
 R^a: 1
 Y-Inter: 35.231
 Eff%: 91.829
 Error: 0.016

 Target: TLS11a/plasma
 Slop: -3.543
 R^a: 1
 Y-Inter: 36.738
 Eff%: 91.52
 Error: 0.017

Direct detection of 63 nt aptamer in diluted plasma

- Serial dilutions of aptamer (63 nt) prepared in 5% or 10% plasma.
- Final plasma concentrations in QPCR reactions are 1.25% and 2.5%
- Slope of standard curves not affected.
- Dose response shift in y-intercept less that one Ct between aptamer dilutions prepared in TE versus diluted plasma
- Total error (%CV + %RE) increases at lower template concentrations with increasing plasma concentration
 - Total error ~30% at 50 copies input in plasma versus total error <10% at 500 copies input in plasma

Input	TE	1.25% Plasma	2.5% Plasma
5000000	2.423	3.854	1.366
500000	1.921	1.649	2.452
50000	3.818	1.508	3.965
5000	2.144	5.006	2.253
500	9.211	6.942	9.308
50	10.676	27.008	30.211

 Target: TLS11a in TE
 Slop: -3.542
 R*.1
 Y-Inter: 35.498
 Eff%: 91.575
 Error: 0.013

 Target: TLS11a in 10% plasma
 Slop: -3.59
 R*.1
 Y-Inter: 36.22
 Eff%: 89.916
 Error: 0.015

 Target: TLS11a in 5% plasma
 Slop: -3.569
 R*.1
 Y-Inter: 35.974
 Eff%: 90.647
 Error: 0.014

Optimized detection of 64 nt aptamer in diluted plasma KCOS

- Assay optimized as described before
 - Primer concentration
 - Annealing temperature
- Serial dilution of 64 nucleotide aptamer in 5% plasma
- Used 5 μl per reaction for final plasma concentrations of 1.25%
- Linear quantification down to 500 copies/reaction
 - Detection of amplification of 250 and 50 copies/reaction
- Slopes of standard curves remain similar to aptamer in TE
- Optimized assay eliminated background signal in NTC

Target: Hepato Carcinoma Slop: -3.474 R^a: 1 Y-Inter: 34.879 Eff%: 94.043 Error: 0.012

Direct detection of 39 nt aptamer in diluted plasma

- Serial dilution of 39 nucleotide aptamer in 5% plasma
- Used 5 μl per reaction for final plasma concentrations of 1.25%
- Assay conditions still under optimization

14

- Slopes of standard curves remain similar to aptamer in TE
- Signal in background wells still present with thresholds >35 cycles

Optimized detection of 40 nt aptamer in diluted plasma KCOS

- Serial dilution of 40nt nucleotide aptamer in 5% plasma
- Used 5 µl per reaction for final plasma concentrations of 1.25%
- Linear quantification down to 500 copies/reaction
 - Detection of amplification of 250 and 50 copies/reaction
- Slopes of standard curves remain similar to aptamer in TE
- Optimized assay eliminated background signal in NTC

Target: Atamer-3064 Slop: -4.082 Ra: 0.999 Y-Inter: 41.093 Eff%: 75.774 Error: 0.035

Summary Assay Characteristics

Aptamer	Slope	y-intercept	R ²	Efficiency
39nt Aptamer	-3.52	38.7	0.999	92.2
40nt Aptamer	-4.09 & -4.16	41.1-41.3	0.997 & 0.999	74.0-75.6
50nt Aptamer	-3.48	35.6	0.999	93.8
51nt Aptamer	3.40 & -3.53	35.2-36.9	0.995 & 0.999	92.0 & 97.0
63nt Aptamer	-3.57	36.0	1.00	90.7
64nt Aptamer	-3.66	36.9	1.00	87.7

Conclusion

- Quantitative PCR a feasible approach for detection and quantification of DNA aptamers
 - Successful amplification of of 6 short, synthetic DNA aptamers of 39-64 nucleotides in length with SYBR green detection in QPCR assays
- Established optimized assay conditions for 40, 63, and 64 nucleotide aptamers
 - 51 nucleotide aptamer no amplification under any conditions: Re-design assay
 - 39 and 50 nucleotide aptamers with signal in NTC likely due to primer heterodimerization: Re-design assays
- Optimized assay sensitivity 50-500 total copies per reaction

- Successful amplification of aptamers (39mer, 63-mer, and 64-mer) directly in canine plasma diluted to 5-10% plasma
 - Linear signal down to 100 copies/µl
 - Reduces time and costs associated optimization of sample preparation
 - Increases sample throughput in optimized assays
- With a LLOQ of 500 copies/reaction, a 1:20 dilution of plasma (5% plasma in input sample) would translate to a lower limit of 2,000,000 copies of aptamer/ml of plasma
 - LLOQ of GLP, validated dual-hybridization assay used for pegaptanib is 6*10⁹ copies/mL of plasma

Acknowledgments

KCAS Molecular Assay team in Department of Cell & Gene Therapy:

- Matthew Pennington, Ph.D.
- Karim Pirani, Ph.D.
- Suman Chaudhary, M.S.
- Bryanna Longacre, B.S.
- Amanda Souaysene, B.S.