
The pursuit of robust quantification of oligonucleotides by hybridization assays

Jill Uhlenkamp, PhD 08 June 2023

labcorp

©2023 Laboratory Corporation of America® Holdings All rights reserved.

Assay reagent quality

Assay development case study

- Developing a dual probe hybridization assay for an aptamer therapeutic
- Assay framework was provided by the client
- Biotin- and Digoxigenin-labeled probes were obtained from a commercial vendor

Assay development summary

- Phase 1 Fine tune from provided method
 - Commercial probes
 - 7 runs over 6 days for optimization
 - 2 runs on Qualification Day 1
 - Fail for QC bias

	Intra-Run A&P – 6 QCs at each level											
				Q	C bia	s (# o	ut of	6)				
			0-1	0%	1	L <mark>O-20</mark> %	6	>20%			Fail	
ULO	Q		()		1			5		5	
HQC				L		4			1		1	
MQ	2		(5		0			0		0	
LQC			(6		0			0	0		
LLOC	z		(5		0			0		0	
	1	2	3	4	5	6	7	8	9	10	11	12
A												
B C												
D												110
E												
F												
G												
Н												

Whole plate precision (% CV) approximately 5%

Assay development summary

Phase 1 – Fine tune from provided method

- Commercial probes
- 7 runs over 6 days for optimization
- 2 runs on Qualification Day 1
 - Fail for QC bias

Phase 2 – Re-optimization

- Commercial probes
- 14 runs over 6 days to adjust assay parameters
 - Probe concentrations increased
- 4 runs over 2 Qualification days
 - Fail for QC bias, selectivity, stability

	A&P – 3 QCs at each level							
QC bias (# out of 3)								
	0-10% 10-20% >20% Fail							
ULOQ	0	2	1	1				
HQC	0	2	1	1				
MQC	2	1	0	0				
LQC	0	2	1	1				
LLOQ 1	0	2	1	0				
LLOQ 2	2	0	1	0				

Dilution linearity								
Bias (# out of 5)								
	0-10% 10-20% >20% Fail							
In Range	0 4 1 1							

Assay development summary

Phase 1 – Fine tune from provided method

- Commercial probes
- 7 runs over 6 days for optimization
- 2 runs on qualification day 1
 - Fail for QC bias

Phase 2 – Re-optimization

- Commercial probes
- 14 runs over 6 days to adjust assay parameters
- Probe concentrations increased
- 4 runs over 2 qualification days
 - Fail for QC bias, selectivity, stability

Phase 3 – Investigation

- Fresh vs. frozen samples, location effects, incubation times
- 38 total runs over 3 phases without transitioning to validation

Assay development summary

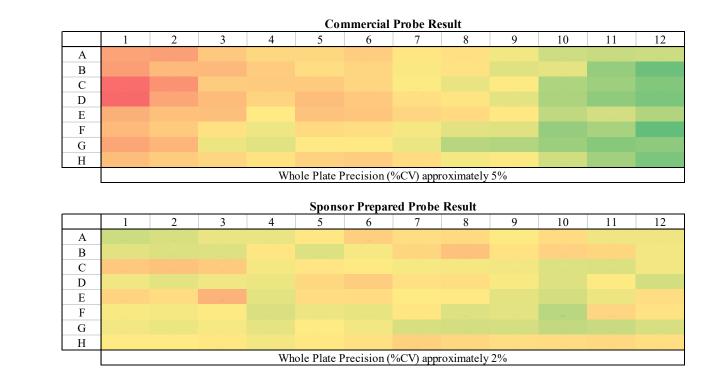
Phase 4 – New probes produced by client

- High probe concentration \rightarrow vendor supply issue and quality concerns
- 2 runs over 2 days for optimization
 - Range remains 50-fold, shifted up by factor of 2
- 8 runs to successfully qualify assay for validation
- 10 total runs to re-optimize and complete the development

Assay development summary

Phase 4 – New probes produced by client

- High probe concentration → vendor supply issue and quality concerns
- 2 runs over 2 days for optimization
 - Range remains 50-fold, shifted up by factor of 2
- 8 runs to successfully qualify assay for validation
- 10 total runs to re-optimize and complete the development


Dilution linearity									
Bias (# out of 6)									
	0-10% 10-20% >20% Fail								
In Range	ge 5 1 0 0								

	QC bias results						
		0-10%	10-20%	>20%	Fail		
	ULOQ	5	1	0	0		
Run A: A&P	HQC	3	3	0	0		
6 QCs at	MQC	5	1	0	0		
each level	LQC	1	5	0	0		
	LLOQ	4	2	0	0		
	ULOQ	2	1	0	0		
Run B: A&P	HQC	3	0	0	0		
3 QCs at	MQC	1	2	0	0		
each level	LQC	3	0	0	0		
	LLOQ	2	1	0	0		
Run C:	HQC	2	0	0	0		
2 QCs at	MQC	1	1	0	0		
H/M/L	LQC	1	1	0	0		

Phase 4 – New probes produced by client

- High probe concentration → vendor supply issue and quality concerns
- 2 runs over 2 days for optimization
 - Range remains 50-fold, shifted up by factor of 2
- 8 runs to successfully qualify assay for validation
- 10 total runs to re-optimize and complete the development

Assay procedure control

Assay development case study

- Dual probe hybridization assay for an ASO therapeutic
- Biotin- and Digoxigenin-labeled probes were obtained from a commercial vendor
- Attempt to transfer a fully validated assay
 - Streptavidin plate and probe lots previously noted as consequential to assay performance
 - Hybridization temperature was changed from 37°C to ambient temperature for better sensitivity

Assay development summary

- Many assay parameters verified/unchanged
 - MRD, probe concentrations
- Could not achieve the same LLOQ
 - Quantitative range shifted and shrunk
- Hybridization temperature changed from 37°C to ambient room temperature to achieve a lower LLOQ

Parameter	Transferred assay	In our lab	Adjusted assay
Quantitative Range	1.5 – 200 nM	4 – 150 nM	1 – 100 nM
Sample Incubation Temp.	37°C	37°C	ART

Assay development summary

- Many assay parameters verified/unchanged
 - MRD, probe concentrations
- Could not achieve the same LLOQ
 - Quantitative range shifted and shrunk
- Hybridization temperature changed from 37°C to ambient room temperature to achieve a lower LLOQ

Parameter	Transferred assay	In our lab	Adjusted assay
Quantitative Range	1.5 – 200 nM	4 – 150 nM	1 – 100 nM
Sample Incubation Temp.	37°C	37°C	ART

24 hr Room Temperature Stability						
	LQC (3	3 nM)	HQC (75 nM)		
Sample	Result	Result %Bias		%Bias		
1	4.93	64.3	111	48.0		
2	4.78	59.3	101	34.7		
3	4.98	66.0	99.9	33.2		

Assay development summary

- Many assay parameters verified/unchanged
 - MRD, probe concentrations
- Could not achieve the same LLOQ
 - Quantitative range shifted and shrunk
- Hybridization temperature changed from 37°C to ambient room temperature to achieve a lower LLOQ

Param	eter		Transferred assay			In our lab		Adjusted assay	
Quanti Range	tative	1.5	1.5 – 200 nM			4 – 150 nM		1 – 100 nM	
Sample Incuba Temp.	ncubation			37°C			RT		
	ART Sam	iple Inc	ubation			37°C San	nple Inc	ubation	
24 hr	Room Te	empera	ture Sta	bility	24 hr Room Temperature Stability				bility
	LQC (3	3 nM)	HQC (7	75 nM)		LQC (3	0 nM)	HQC (2	25 nM)
Sample	Result	%Bias	Result	%Bias	Sample	Result	%Bias	Result	%Bias
1	4.93	64.3	111	48.0	1	33.7	12.3	243	8.0
2	4.78	59.3	101	34.7	2	31.5	5.0	231	2.7
3	4.98	66.0	99.9	33.2	3	28	-6.7	209	-7.1

Assay development summary

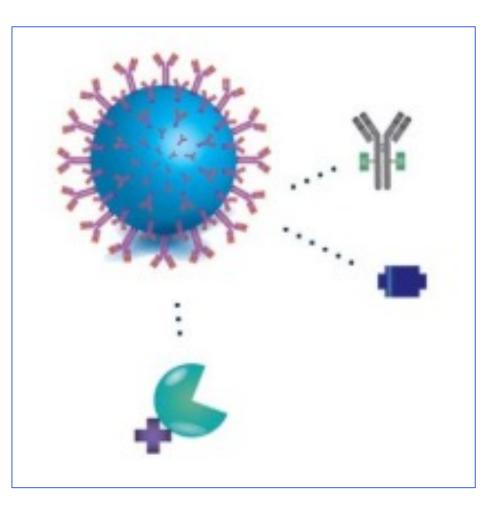
- Many assay parameters verified/unchanged
 - MRD, probe concentrations
- Could not achieve the same LLOQ
 - Quantitative range shifted and shrunk
- Hybridization temperature changed from 37°C to ambient room temperature to achieve a lower LLOQ

Parameter	Transferred assay	In our Iab	Adjusted assay	Final assay
Quantitative Range	1.5 – 200 nM	4 – 150 nM	1 – 100 nM	10 – 300 nM
Sample Incubation Temp.	37°C	37°C	ART	37°C

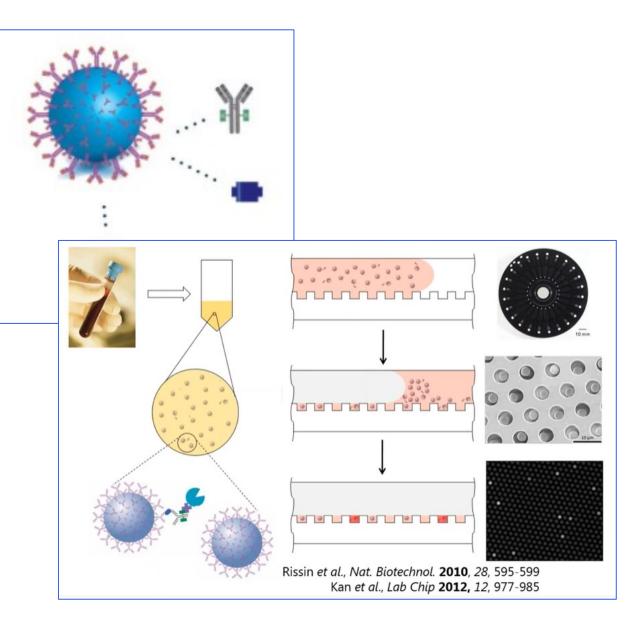
	ART Sam	ubation		З	37°C San	nple Inc	ubation		
24 hr Room Temperature Stability				24 hr	Room Te	empera	ture Sta	bility	
	LQC (S	3 nM)	HQC (7	75 nM)		LQC (3	0 nM)	HQC (2	25 nM)
Sample	Result	%Bias	Result	%Bias	Sample	Result	%Bias	Result	%Bias
1	4.93	64.3	111	48.0	1	33.7	12.3	243	8.0
2	4.78	59.3	101	34.7	2	31.5	5.0	231	2.7
3	4.98	66.0	99.9	33.2	3	28	-6.7	209	-7.1

Enhanced assay sensitivity

Assay development case study


- Compare MSD ECL assay to Quanterix Simoa®
- Assays developed for 21-mer non-proprietary analyte
- Probe design
 - MSD ECL
 - 3' biotin for capture
 - 5' dig for detection
 - Quanterix Simoa[®]
 - 5' amine modification with spacer to couple to the beads
 - 3' biotin for detection with streptavidin-labeled enzyme

Quanterix Simoa® summary


- Traditional sandwich assay format in solution on magnetic beads
 - Streptavidin-labeled enzyme produces fluorescence
- Sample is loaded to a disk and travels across an array of small wells
- Fluorescence image is captured, fluorescent beads are counted
 - At higher sample concentrations, number of binding events per bead can be determined

Quanterix Simoa® summary

- Traditional sandwich assay format in solution on magnetic beads
 - Streptavidin-labeled enzyme produces fluorescence
- Sample is loaded to a disk and travels across an array of small wells
- Fluorescence image is captured, fluorescent beads are counted
 - At higher sample concentrations, number of binding events per bead can be determined

Quanterix Simoa® summary

- Traditional sandwich assay format in solution on magnetic beads
 - Streptavidin-labeled enzyme produces fluorescence
- Sample is loaded to a disk and travels across an array of small wells
- Fluorescence image is captured, fluorescent beads are counted
 - At higher sample concentrations, number of binding events per bead can be determined

Simoa[®] Technology and ECL Comparison

Simoa [®] Method outline (in human serum)	ECL Method outline (in human serum)
1. Dilute all samples in buffer	1. Hybridization: Incubate capture probe + samples (1.5 hour incubation)
2. Hybridization: Combine capture beads + diluted samples + detector probe and incubate (2 hour incubation)	2. Add hybridized probe/samples to streptavidin coated MSD plate and incubate (1-2 hour incubation)
3. Wash beads and incubate with SBG enzyme (1 hour incubation)	3. Wash plate and add digoxigenin-labeled detector probe (1 hour incubation)
4. Wash beads and load onto instrument	4. Wash plate and add Sulfo Tag-labeled anti-digoxigenin detection antibody (1 hour incubation)
5. Plate reading (2-3 hours)	5. Wash plate and read
Total Assay Time = 7-8 hours	Total Assay Time = 5-6 hours
Readout signal: Fluorescence	Readout signal: electrochemiluminescence
Reported raw data: AEB (Average number of Enzyme per Bead)	Reported raw data: RLU

Simoa[®] Technology and ECL Comparison

Accuracy & Precision

Simoa [®] Range I	Concentration (fM)	%Bias	%ТЕ	Simoa [®] Range II	Concentration (fM)	%Bias	%ТЕ
ULOQ	10,000	-3.9	15.3	ULOQ	8000	7.5	19.6
HQC	7500	-10.4	17.4	HQC	6000	3.8	13.6
MQC	550	-9.8	16.9	MQC	900	2.1	12.8
LQC	60	-17.5	35.6	LQC	200	15.1	37.0
LLOQ	30	-30.6	54.2	LLOQ	100	4.4	14.1

Samples were tested in duplicates

Samples were tested in triplicates

ECL	Concentration (fM)	%Bias	%ТЕ
ULOQ	2,000,000	5.5	13.0
HQC	1,600,000	4.4	9.3
MQC	100,000	-2.3	7.0
LQC	10,000	-6.4	11.8
LLOQ	4000	-10.5	18.7

Samples were tested in duplicates

Simoa[®] Technology and ECL Comparison Final Results

Parameter	Simoa®	ECL
Lower Limit of Quantitation	100 fM	4000 fM
Upper Limit of Quantitation	8000 fM	2,000,000 fM
Sample Requirement per Test	25 μL	150 μL
MRD	1/14	1/3.3
Curve Fit; Weighting Factor	4-PL; 1/y ²	4-PL; 1/y ²
Method Selectivity	Pass	Pass
Dilution Linearity	1/500,000	1/40,000

Simoa[®] Technology and ECL Comparison Final Results

Parameter	Simoa®	ECL
Lower Limit of Quantitation	100 fM	4000 fM
Upper Limit of Quantitation	8000 fM	2,000,000 fM
Sample Requirement per Test	25 μL	150 μL
MRD	1/14	1/3.3
Curve Fit; Weighting Factor	4-PL; 1/y ²	4-PL; 1/γ ²
Method Selectivity	Pass	Pass
Dilution Linearity	1/500,000	1/40,000

40x improvement in sensitivity

Conclusions

- Assay procedure details
- Reagent characteristics
 - Probe quality
 - Probe design (LNA, other modifications)
- Seeking new formats to meet assay demands
 - Simoa[®] or other technologies

Acknowledgments

- Labcorp Indianapolis Immunochemistry Services Scientists
 - Peter Wallace, Russ Garton, James Cyran
 - Bingbing Wang, Erica Simmons, Barry Peterson
- Labcorp Indianapolis Immunochemistry Services Leadership
 - Eric Thomas
 - Mark O'Dell
 - Dan Sikkema

- Labcorp Scientific Affairs
 - Peter Murphy
- Quanterix Corporation
 - David Rissin and David Duffy
 - Carly Trulock
 - Tech Support (Gaurav Chavan, Perla Gallo, Jia Lu, Jillian Mason, Jennifer DeMent)
- Other Scientific Support
 - Rob Nelson

Thank you! Questions?

©2023 Laboratory Corporation of America® Holdings All rights reserve