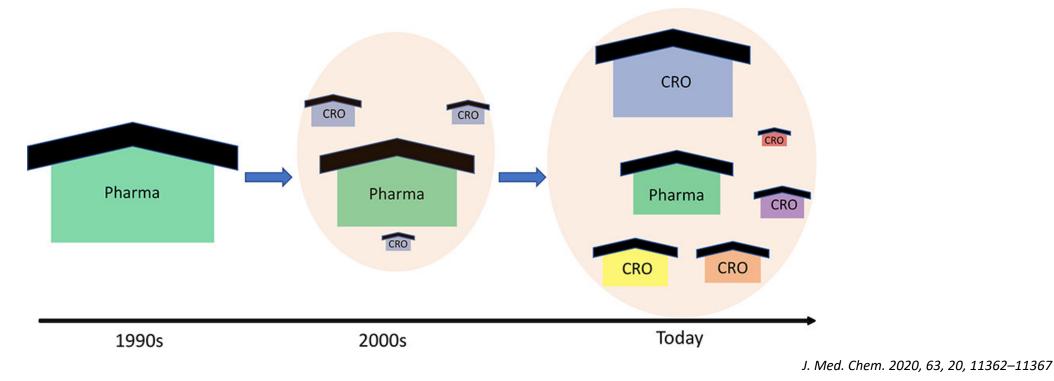


Outsourcing of Small molecule LC-MS bioanalytical methods: when the assay has to be adapted

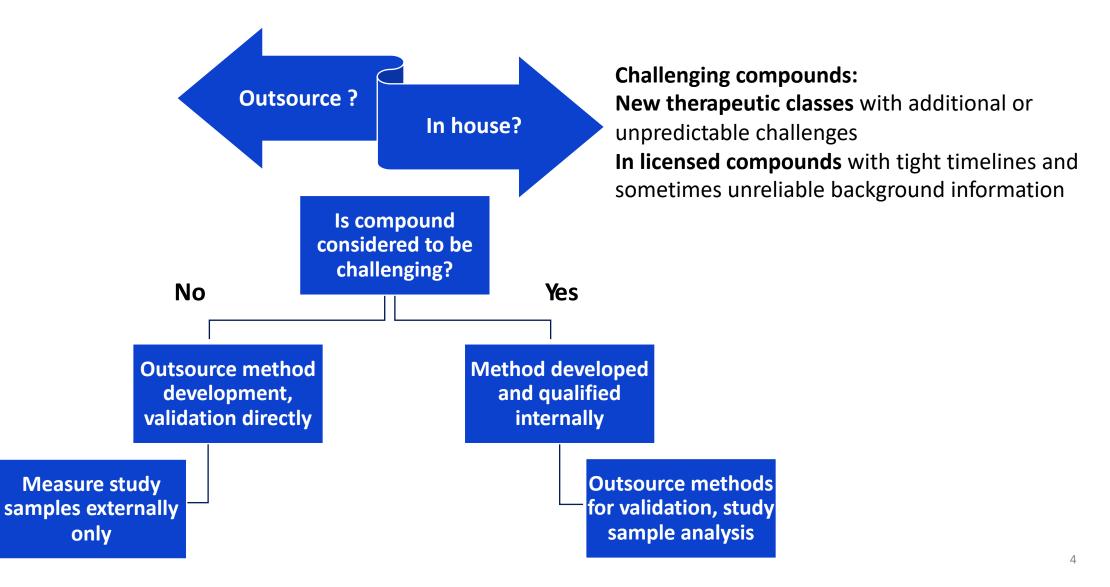
Brian Dan Bioanalytics and Biomarkers, pRED, Pharmaceutical Sciences Roche Innovation Center Basel

9th EBF Young Scientist Symposium, May 12th, 2023


Table of contents

- 1. Current trend in outsourced bioanalytical work and application at Roche
- 2. Key factors during method development affecting successful method transfer
- 3. Case examples
- 4. Lessons learned and recommendations

Current trend in outsourced bioanalytical activities



> Objectives:

- \rightarrow Gain in flexibility (mainly big pharma)
- \rightarrow Internal capacity saving Focus on innovation (both big pharma and startup)
- \rightarrow Cost saving (mainly startup)
- \rightarrow Get expert support (mainly startup)

Small molecule bioanalytical outsourcing strategy at Roche

Key factors to be considered during method development for an easily transferrable method

Experimental procedure

- Least complex methods possible
- Avoid unnecessary complex extractions
- Avoid usage of "difficult to obtain" reagents or materials
- Avoid using more rare equipment

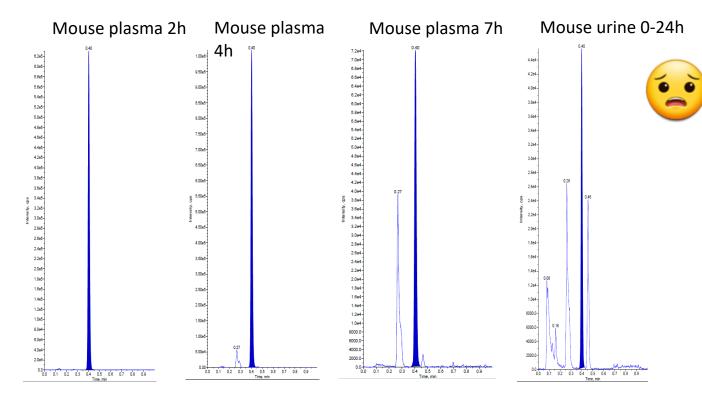
Robustness

- Test method thoroughly before transfer
- Ensure room for sensitivity losses during transfers
- Do not expect same performance at external lab

Parameters qualified internally

- Linearity
- P/A (intra day)
- Stability
- Matrix effects
- Carry-over
- Selectivity and specificity

> Objectives:


- \rightarrow Keep knowledge and expertise internally
- \rightarrow Ensure efficient method transfers and validations
- \rightarrow Avoid failures during method transfers
- \rightarrow Meeting project timelines

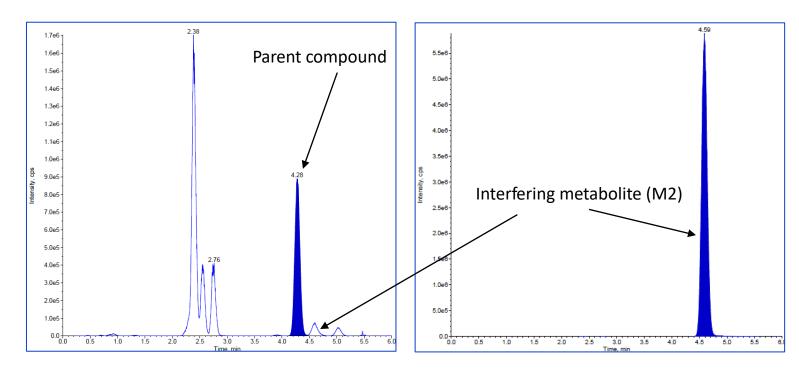
..... Despite this, some additional challenges can be encountered when outsourcing small molecule LCMS methods

Case example 1: Timelines - Lack of biotransformation data In-licensed compound with tight project timelines

- In-licensed small molecule covalent inhibitor containing a reactive warhead
- Method was developed partially internally to ensure stability in biological samples
- Method validated at CRO prior to non-GLP study sample analysis and *in vivo* MetID data availability

Time (min)	A (%)	B (%)	Flow (mL/min)
0.00	65.0	35.0	1.50
0.50	60.0	40.0	1.50
0.52	5.0	95.0	1.50
0.75	5.0	95.0	1.50
0.77	65.0	35.0	1.50

Initial gradient, good retention factor (k') Column dimensions: 2.1x30mm, 1.7μm, RP


- Multiple closely related compounds responding at the same MRM transition than the parent drug in study samples
- Is specificity still given? Probably not in case of co-elution

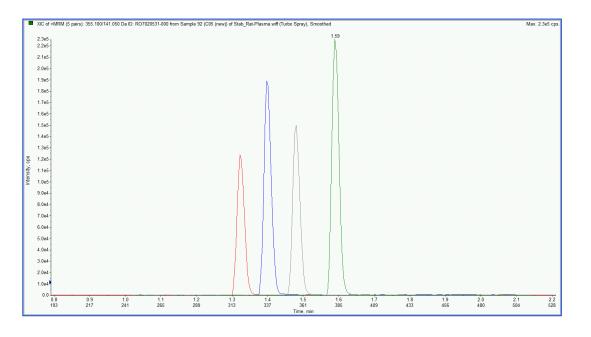
Case example 1: Timelines - Lack of biotransformation data In-licensed compound with tight project timelines

- In the meantime, in vivo metabolites were identified and could be tested for interferences in the BA method
- Initial validated method showed interferences coming from in source fragmentations of co-eluting, in vivo metabolites

Time (min)	A (%)	В (%)	Flow (mL/min)
0.00	72.0	28.0	0.750
5.00	70.0	30.0	0.750
5.04	5.0	95.0	0.750
5.50	5.0	95.0	0.750
5.54	72.0	28.0	0.750

Adapted gradient, still good retention factor (k') but much better chromatographic selectivity Column dimensions: 2.1x50mm, 1.7µm, RP

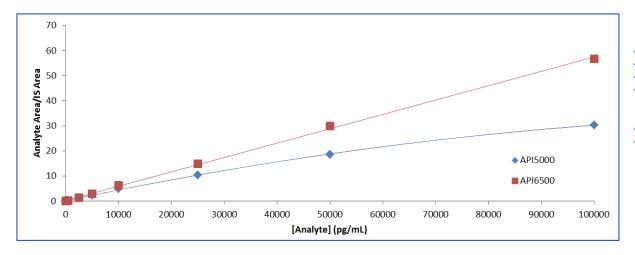
Impact on already measured study samples luckily negligible

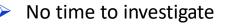


Extra time and effort to adapt and revalidate the method

Case example 2: Timelines and critical materials for the method Multiplexed method for parent compound plus 3 metabolites

- LCMS method for a prodrug compound plus 3 of its metabolites developed and qualified internally
- Chromatography considered critical Baseline separation between all compounds to ensure specificity

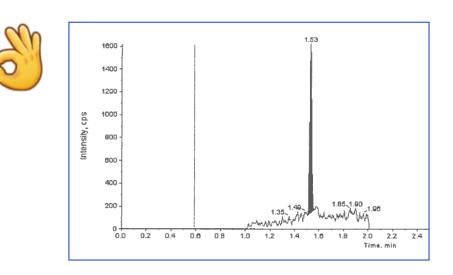



Method ready to be transferred to external partner

Case example 2: Timelines and critical materials for the method Multiplexed method for parent compound plus 3 metabolites

- Analytical column ordered too late by external partner due to missing exact column information
- Another column used, adapted gradient to ensure baseline separation between the different compounds
- Linearity turned out to become an issue with the adapted method Loss of linearity at higher concentrations

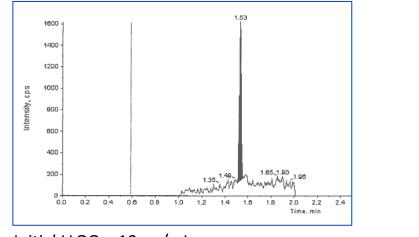
- MS used in the method was switched from an API5000 to an API6500, solving the linearity issue
- Method could be successfully validated

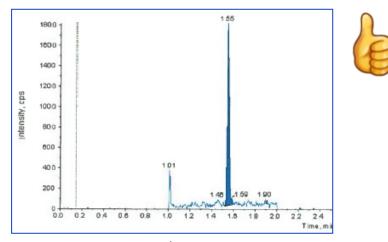


- Critical materials for a method should always be ordered asap
- Importance of timely communication between both bioanalytical sites

Case example 3: Change of intended use – Target sensitivity Small molecule compound in Ophthalmology Project

- Some methods need high sensitivities to fully elucidate the PKs (quantification at late time points)
- In that case the methods are developed and qualified internally, making sure the required sensitivity can be reached
- Example here: Method with an LLOQ of 10 pg/mL, based on LLE, using uHPLC chromatography and sensitive MS detection


- Robust LLOQ
- Method ready to be transferred to external partner for support of GLP TOX studies with explicit requirement of having same LLOQ

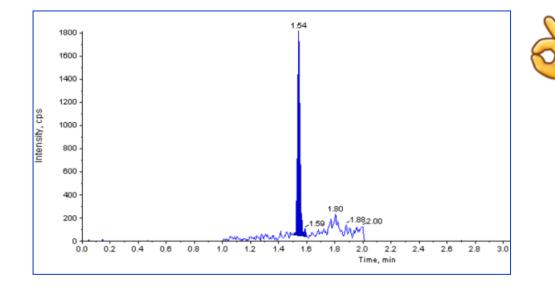


Case example 3: Change of intended use – Target sensitivity Small molecule compound in Ophthalmology Project

- Project team redesigned the TK studies, original method developed for PK studies was way too sensitive
- Method had to be adjusted: Calibration range was adapted, to avoid performing dilutions into validated range

Initial LLOQ – 10 pg/mL

New LLOQ – 100 pg/mL High range method – 10 fold higher range – Still same dynamic range of detector


- Method adapted successfully
- Much easier, less sensitive method could have been developed and validated upfront, avoiding time losses
- Shows importance of timely communication within project teams

Case example 4: Equipment comparability at both sites

Small molecule compound in Ophthalmology Project

- LCMS method for a small molecule lipophilic compound, developed and qualified in house to support FiH clinical study
- Sensitive method required, LLOQ of 10 pg/mL

Method ready to be transferred to external partner

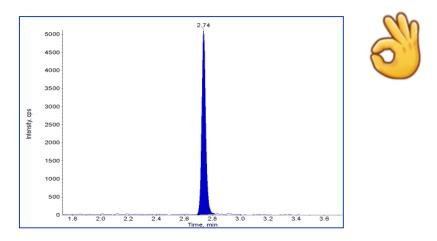
Case example 4: Equipment comparability at both sites

Small molecule compound in Ophthalmology Project

- Method performance at external lab was good, except chromatographic carry-over which was too high
- Exactly same LCMS systems used at both sites Carry-over type?

- > Carry-over found could be identified as Autosampler carry-over
- Difference in Firmwares installed on the LC systems was leading to Autosampler Wash programs not being identical
- > Shows importance of details, which can affect drastically method performances

Case example 5: Equipment comparability at both sites


Lipophilic compound with challenging chromatography

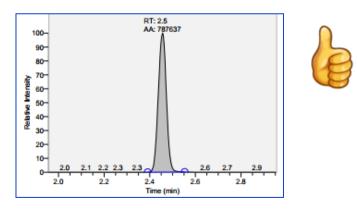
• LCMS method for a small molecule lipophilic compound, developed and qualified in house

Chromatography was nicely tailored for the compound

Time (min)	A (%)	В (%)	Flow (mL/min)
0.00	70.0	30.0	1.00
0.40	70.0	30.0	1.00
2.90	50.0	50.0	1.00
3.00	5.0	95.0	1.00
4.00	5.0	95.0	1.00
4.10	70.0	30.0	1.00
4.50	70.0	30.0	1.00

Column: core-shell, PFP, 110A, 2.6µm, 2.1 x 50mm

Method ready to be transferred to external partner


Case example 5: Equipment comparability at both sites

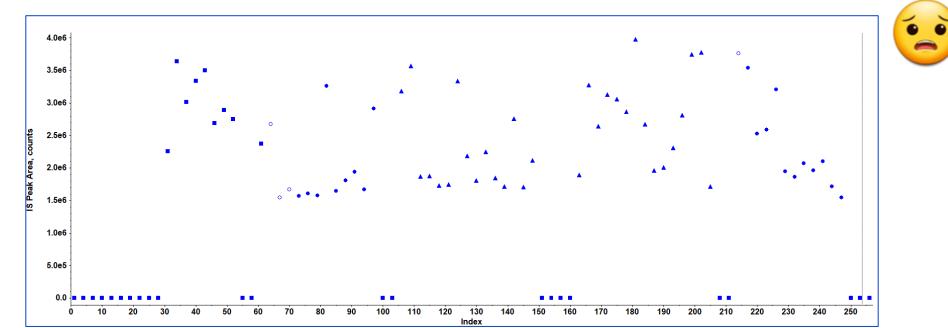
Lipophilic compound with challenging chromatography

- Observed back-pressure with the initial method was too high for the external partner
 - > Chromatography had to be adjusted trying to keep a good retention factor and chromatographic resolution

	Time (min)	A (%)	B (%)	Flow (mL/min)
Г	0.00	70.0	30.0	0.650
	0.40	70.0	30.0	0.650
	3.00	30.0	70.0	0.650
	3.10	5.0	95.0	0.650
	4.00	5.0	95.0	0.650
	4.10	70.0	30.0	0.650

Column: core-shell, PFP, 110A, 2.6 μ m, 2.1 x 50mm

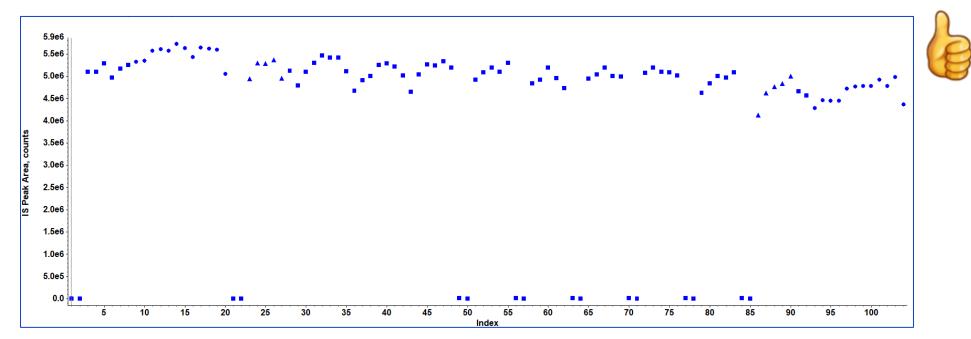
Method adapted and validated successfully



- Method could have been developed accordingly up front, avoiding unnecessary adjustments
- > Shows importance of equipment comparability, to be able to apply same parameters at both sites

Case example 6: Lack of information, details about the method Oligonucleotide method using an anion exchange SPE

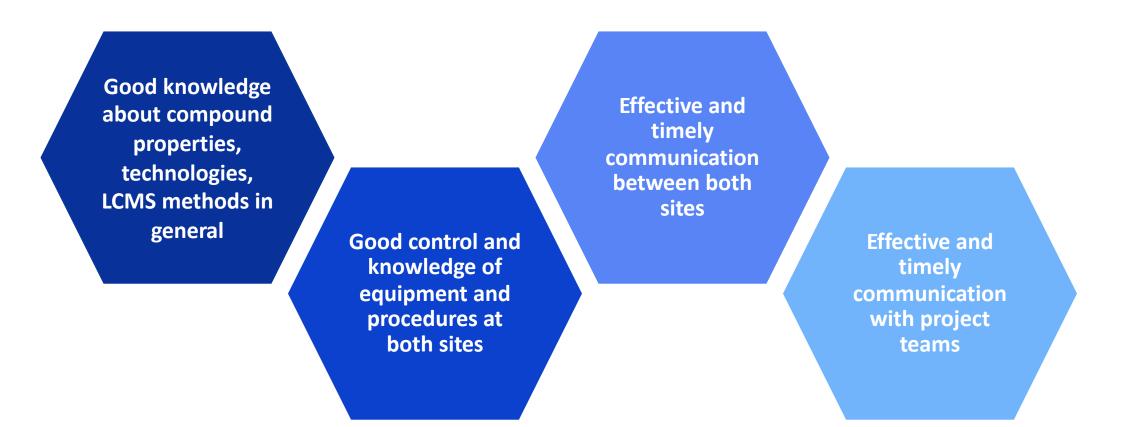
 Oligonucleotide method transferred internally from one group to another – Extraction based on tailored anion exchange SPE


First test run showed following SIL-IS trend:

> Really high SIL-IS response factor variations – Relative response between analyte and SIL-IS was stable

Case example 6: Lack of information, details about the method Oligonucleotide method using an anion exchange SPE

- After investigations, the SPE extraction turned out to be the root cause for the SIL-IS variations
 - > Issue could be solved by centrifuging samples prior to loading onto the SPE and not loading entire sample



Much better SIL-IS response factor variation – Method ready for sample measurement
Despite a well established protocol, small variations can make a big difference

Key learnings and outlook

Outlook: What about outsourcing of large molecule LCMS methods? Can be even more challenging (methods at edge of sensitivity, usage of more critical reagents, materials, more complex sample processing procedures)....

Acknowledgments

Luca Ferrari

Sergio Menta

Pawel Dzygiel

Didier Wolter

Katja Heinig

Andreas Gloge

Denis Herzog

Thomas Wirz

Franz Bucheli

Daniela Fraier

Roland Staack

Marianne Manchester

Thank you for your attention

Doing now what patients need next