In-depth evaluation of automated non-contact reflectance-based hematocrit prediction of dried blood spots Laura Boffel[#], Liesl Heughebaert[#], Stijn Lambrecht, Mare Luginbühl, Christophe Stove // EBF 9th YSS // 12/05/2023 [#]equally contributed

Dried blood spots and the hematocrit effect

Alternative microsampling devices

Focus Series: Alternative Sampling Strategies

Alternative Sampling Devices to Collect Dried Blood Microsamples: State-of-the-Art

GHEN¹

UNIVERSIT

Lisa Delahaye, PharmD,* Herman Veenhof, PhD,† Birgit C. P. Koch, PhD,‡ Jan-Willem C. Alffenaar, PhD,§¶ Rafael Linden, PhD,** and Christophe Stove, PhD*

Methodologies to predict

the hematocrit

analytical. chemistry

Prediction of the Hematocrit of Dried Blood Spots via Potassium Measurement on a Routine Clinical Chemistry Analyzer

Sara Capiau,[†] Veronique V. Stove,[‡] Willy E. Lambert,[†] and Christophe P. Stove^{*,†}

[†]Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium [‡]Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium

Contents lists available at ScienceDirec Clinica Chimica Acta

Article pubs.acs.org/ad

iournal homepage: www.elsevier.com/locate

Clinica Chimica Acta 523 (2021) 239-246

 K^+

Near-infrared-based hematocrit prediction of dried blood spots: An in-depth evaluation

> Article pubs.acs.org/ac

Lisa Delahaye^{a,1}, Liesl Heughebaert^{a,1}, Christoph Lühr^b, Stijn Lambrecht^c, Christophe P. Stove a,

^a Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent, Belgium ^b BÜCHI Labortechnik GmbH, Essen, Germany Laboratory of Clinical Chemistry and Hematology, Ghent University Hospital, Ghent, Belgiu

analytical. Cite This Anal Chem. 2018, 90, 1795-1804

UV-Vis

Correction for the Hematocrit Bias in Dried Blood Spot Analysis Using a Nondestructive, Single-Wavelength Reflectance-Based Hematocrit Prediction Method

Sara Capiau,[†] Leah S. Wilk,[‡] Pieter M. M. De Kesel,[†] Maurice C. G. Aalders,[‡] and Christophe P. Stove*.[†]®

[†]Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemse-steenweg 460, Ghent 9000, Belgium

^{*}Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands

3

Alternative microsampling

devices

analytical chemistry

Scite This: Anal. Chem. 2018, 90, 1795–1804

Correction for the Hematocrit Bias in Dried Blood Spot Analysis Using a Nondestructive, Single-Wavelength Reflectance-Based Hematocrit Prediction Method

Sara Capiau,[†] Leah S. Wilk,[‡] Pieter M. M. De Kesel,[†] Maurice C. G. Aalders,[‡] and Christophe P. Stove^{*,†}

[†]Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemse-steenweg 460, Ghent 9000, Belgium

^{*}Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands

Focus Series: Alternative Sampling Strategies

Alternative Sampling Devices to Collect Dried Blood Microsamples: State-of-the-Art

isa Delahaye, PharmD,* Herman Veenhof, PhD,† Birgit C. P. Koch, PhD,‡ Jan-Willem C. Alffenaar, PhD,§¶| Rafael Linden, PhD,** and Christophe Stove, PhD*

Methodologies to predict the hematocrit

analytical. chemisti

Article

pubs.acs.org/ac

Prediction of the Hematocrit of Dried Blood Spots via Potassium Measurement on a Routine Clinical Chemistry Analyzer

Sara Capiau,[†] Veronique V. Stove,[‡] Willy E. Lambert,[†] and Christophe P. Stove*,[†]

Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium

analytica chemistry

Cite This: Anal. Chem. 2018, 90, 1795-1804

Article pubs.acs.org/ac

Prec

460, Ghent 9000, Belgium

Correction for the Hematocrit Bias in Dried Blood Spot Analysis Using a Nondestructive, Single-Wavelength Reflectance-Based Hematocrit Prediction Method

Sara Capiau,[†] Leah S. Wilk,[‡] Pieter M. M. De Kesel,[†] Maurice C. G. Aalders,[‡] and Christophe P. Stove^{*,†©}

[†]Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemse-steenweg 460, Ghent 9000, Belgium

^EDepartment of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands

Alternative Sampling Devices to Collect Dried Blood Microsamples: State-of-the-Art

Alffenaar, PhD, §¶ Rafael Linden, PhD,** and Christophe Stove, PhD*

analyti UV-Vis-based hematocrit prediction module incorporated into the automated CAMAG® DBS-MS 500

HCT system

5

UV-Vis-based hematocrit prediction

Study objectives

UNIVERSITY

Results

GHENT

UNIVERSITY

Method validation

Stability

Hct range	Intra-day precision	Total precision	Bias	
	CV (%)	CV (%)	%	L/L
< 0.20	1.2%	1.7%	10.8%	0.019
0.20-0.25	1.6%	1.9%	7.9%	0.018
0.25-0.30	1.6%	1.9%	0.4%	0.000
0.30-0.35	1.5%	2.0%	0.1%	0.000
0.35-0.40	1.4%	1.7%	-0.9%	-0.003
0.40-0.45	1.4%	1.9%	0.1%	0.000
0.45-0.50	1.1%	2.0%	5.3%	0.025
> 0.50	2.2%	2.7%	-0.6%	-0.004
Total (42)	1.5%	2.0%	3.0%	0.007

- Accuracy: maximum bias of 0.025 L/L
- Precision: maximum total imprecision of 2.7%

Method validation

'A good result can only be collected from a correctly collected sample.'

Limited impact of the spotted volumes

No impact of non-standard sampling strategies, except pushing the DBS

- No impact of filter paper type
- UV-Vis-based hematocrit prediction proved to be robust

Method comparison

Conventional Hct measurement (via a hematology analyzer) vs. UV-Vis-based Hct prediction

Lab-lab comparison

Evaluation of the validated calibration model as 'generic' model across different CAMAG DBS-MS 500 Hct systems

Results

Venous application

Application of the methodology on venous DBS collected in the framework of TDM of tacrolimus (n = 48)

-0.2

0.1

0.2

0.3

0

0.072 ھ

0.5

0

0

0.4

Mean of UV-Vis and Sysmex (L/L)

-0.003

-0.078

0.6

- We successfully set up and validated a calibration model using authentic patient samples
- We demonstrated that the validated calibration model is 'generic', provided that the performance of the system and the model are tested befor **FIOT CARE** plementation
- Application of the method on capillary samples, covering a hematocrit range as large as possible
- The hematocrit can still reliably be predicted after 2 weeks of storage at room temperature
- Implementation of the validated calibration model into system software to increase the method's
- UV-Vis-based hematocrit prediction proved ease bof obsest against multiple DBS-related variables

We demonstrated applicablility on an independent venous DBS sample set collected in the context of TDM of tacrolimus

Laura Boffel PhD Student

Prof. Christophe Stove LABORATORY OF TOXICOLOGY

E Laura.Boffel@ugent.be Christophe.Stove@ugent.be T +32 9 264 81 36

www.ugent.be

