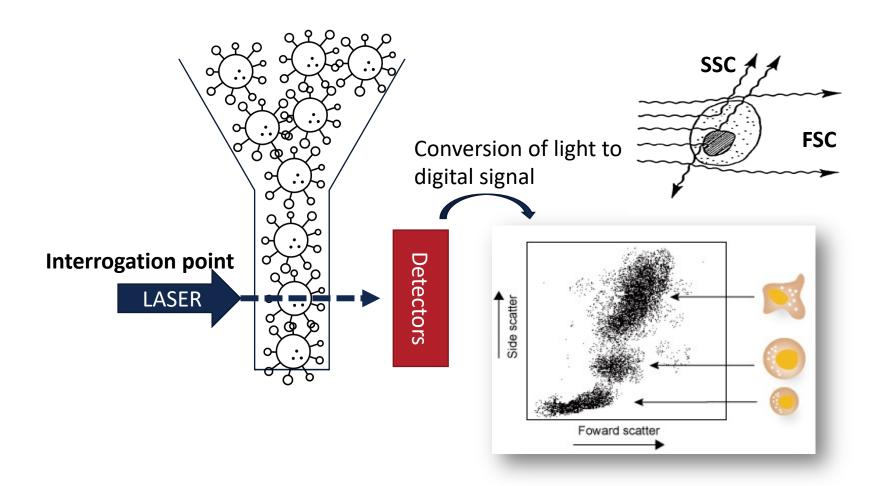
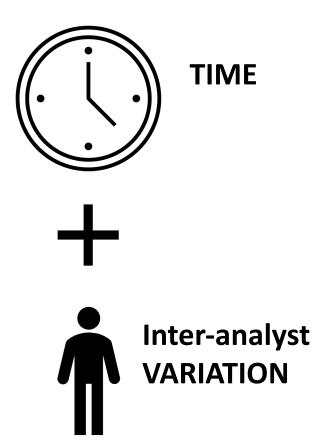


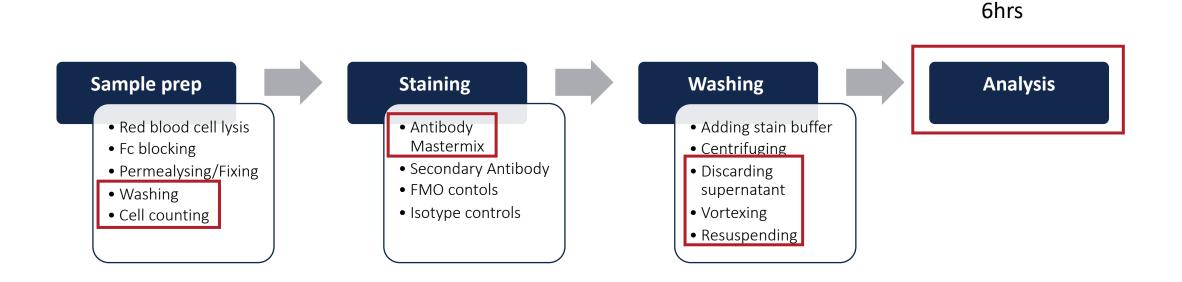
How can we use automation to streamline flow cytometry processes?


By Zoe Georgakopoulou



Streamlining flow cytometry

Flow Cytometry - Why is automation needed?

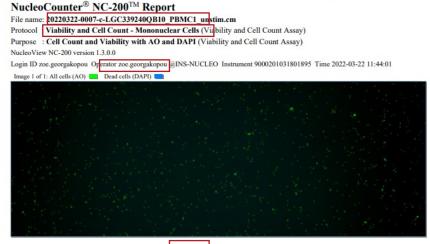


Typical Workflow

ANALYST VARIATION

1. Automated cell counting

	Manual cell counting	Automated cell counting
Time	>30min	<2min
Accuracy	Subjectivity in defining cells	Objective
Analyst variation	CV>15% calculation errors	Low CV<5%
Viability staining	Trypan blue	DAPI and Acridine orange
Compliance	Manual counts recorded	Able to digitally record and store data
Sample volume	10μL	200μL

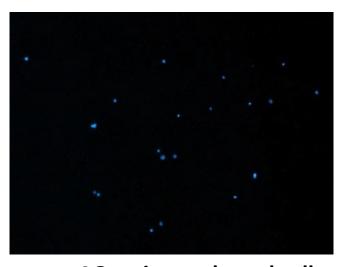


Automated cell counting – GCP compliant

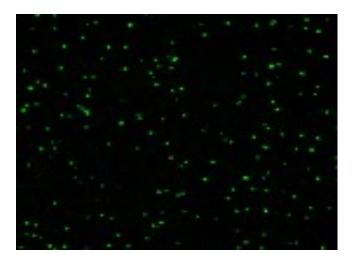
Technology that count

Viability (%)	99.5	
Live (cells/ml)	1.34E6	
Dead (cells/ml)	6.21E3	
Total (cells/ml)	1.35E6	
Estimated cell diameter (um)	9.5	
Cell diameter standard deviation (um)	4.5	
(%) of cells in aggregates with five or more cells	1	

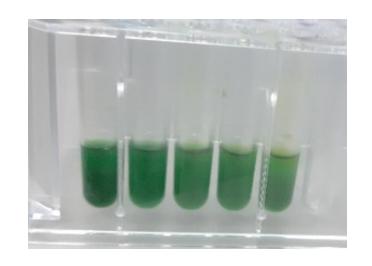
stes[None]	☐ Gates[P1]		Gates[None]		Gate derived results	D
/	34		00.9		Viability (%)	99.5
/			6	- 1	Live (cells/ml)	1.34E6
41	8-			ß.	Dead (cells/ml)	6.21E3
#	0		4,00	//	Total (cells/ml)	1.35E8
P1:99 %	DAPI - Area 2.85 9;0 31.6	P2: 0 %	2 00 4	I have		

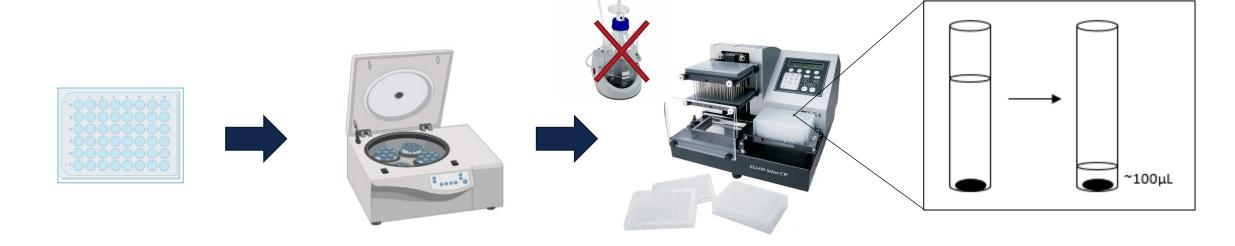

Sample Volume (ul) 200.0 Dilution Volume (ul) 0.000 Multiplication factor 1.000

Audit trail:


- Operator and time
- Protocol used
- Cell counts
- Gating

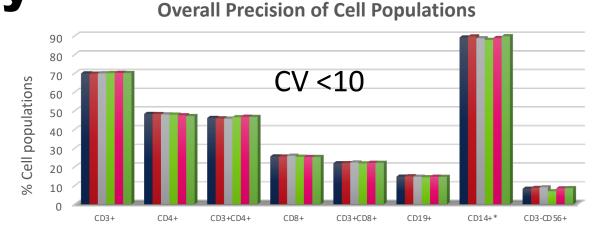
DAPI stains dead cells


AO stains nucleated cells



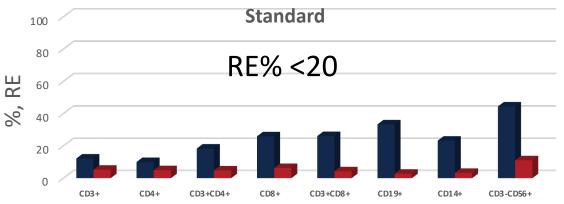
	Manual pipetting	Plate washer
Time	>5min	<2min
Technical skill	High- must not touch cell pellet	Low – needle height is set
Variation	Variable	Uniform residual volume

Plate washer - improvement in precision and accuracy

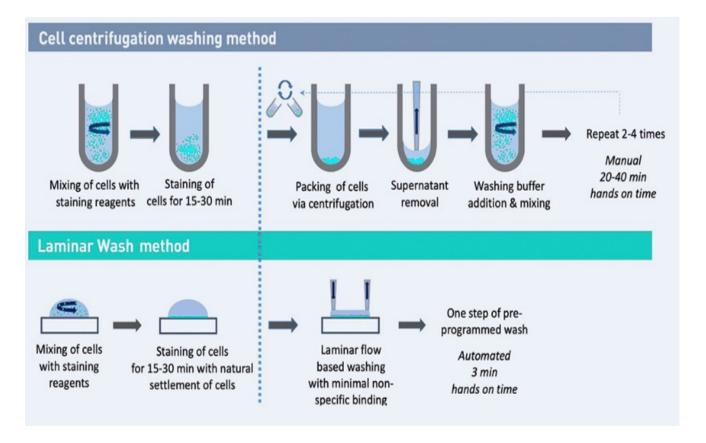


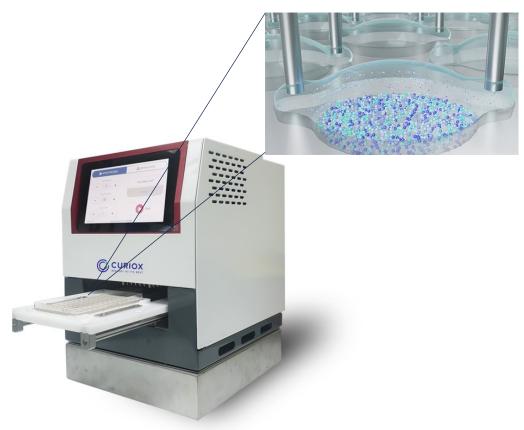
Experiment overview:

- Immunophenotyping method
- Immuno-trol samples
- 6 analysts
- Over a couple of days
- 2 flow cytometers


7587251	LOT		U	t	
2022-09-28	0	U	2	SI SI	2
	×	% +	t	%+	1
CD2+	LY %	76	8	0.76	0.08
CD3+	LY %	70	9	0.70	0.09
CD4+	LY %	44	5	0.44	0.05
CD3+/CD4+	LY %	43	9	0.43	0.09
CD5+	LY %	73	12	0.73	0.12
CD8+	LY %	29	7	0.29	0.07
CD3+/CD8+	LY %	25	6	0.25	0.06
CD14+	MO %	85	20	0.85	0.20
CD19+	LY %	16	5	0.16	0.05
CD45+	LY %				
CD3-/CD56+	LY %	13	4	0.13	0.04

Immuno-trol cells: number of cells in specific populations are within specified ranges


Cell Populations



Analyst

Can we fully automate washing?

3. Hamilton – risk-free antibody mastermix

Case study:

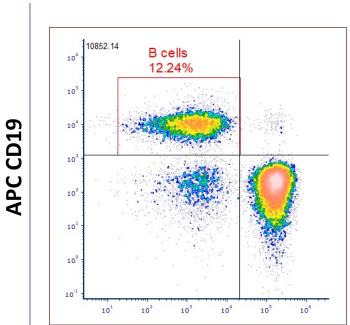
- 4 panels = 3 hrs manually
- 32 antibodies
- 5 reagents require pre-dilution

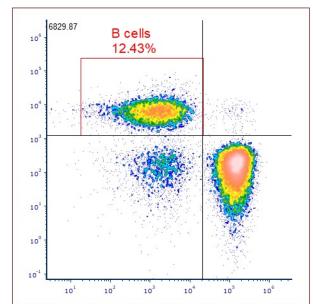
62 pipetting steps!

	Manual pipetting	Hamilton
Time	3hrs	20min
Reproducibility concern	High – analyst variation	Low - CV<0.5
Risk of error	High	Low – RE%<1 Use of barcodes
Risk of RSI	High	No risk
Compliance	Pipettes recorded on paperwork	Trace file created (Excel)

Validated Excel CSV file

Method run and CSV file transferred


Trace and output file created


Hamilton data

Manual Antibody MM

Hamilton Antibody MM

BB515 CD3

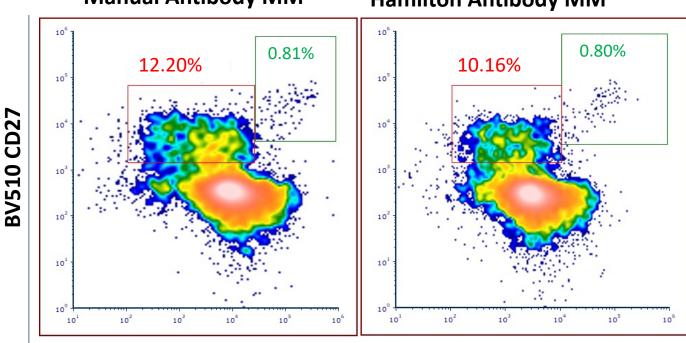
Comparable results

	Manual	Hamilton
Live cells	54.18%	55.45%
Singlets	77.43%	75.98%
B cells	22.10%	22.70%
CD4 cells	42.23%	41.67%
CD8 cells	15.36%	15.60%

Hamilton data

Comparable results even for rarer populations

- Decreased data spread


Stain index: how well can we resolve positive from negative Larger stain index = better separation

Stain index: 8.79

Manual Antibody MM

Hamilton Antibody MM

Stain index: 10.40

PE-CF594 CD38

Plasmablasts

Plasmablast background

6hrs → 3hrs

Sample prep

- Red blood cell lysis
- Fc blocking
- Permealysing/Fixing
- Cell counting

Staining

- Antibody Mastermix
- Secondary Antibody
- FMO contols
- Isotype controls

Washing

- Adding stain buffer
- Centrifuging
- Discarding supernatant
- Vortexing
- Resuspending

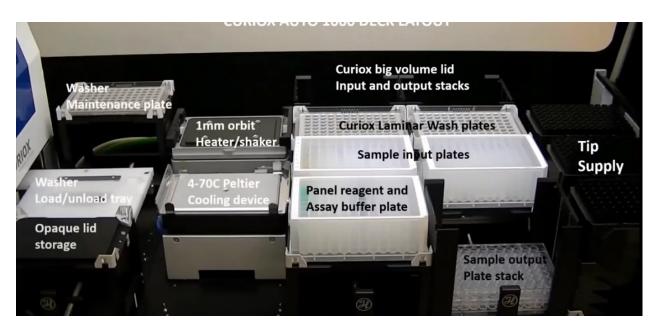
Analysis

lower variability

- Faster
- Objective counts
- Fully comparable results
- Saves time
- Low risk

- Increased assay robustness
- Consistent washing

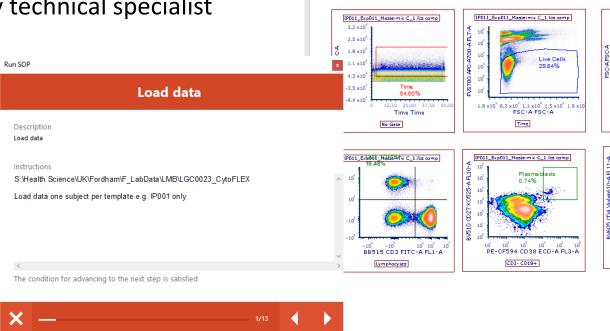
Future prospects – can flow cytometry be fully automated?

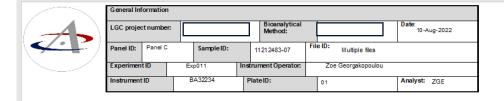


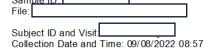
LAMINAR WASH AUTO 1000

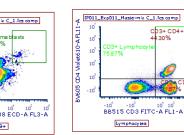
All steps automated:

- Sample addition
- Vortexing
- Live/dead staining
- Incubating
- Washing

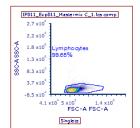


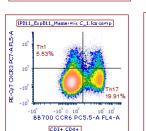

Data analysis - can we minimise analyst variation?

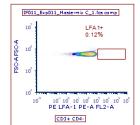


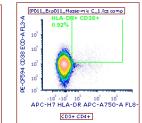

FCS Express templates:

- Minimal gating adjustments
- Analysts run an SOP full gating instructions
- Analysis can be signed and approved by technical specialist


1.2 x10


8 9 v10


[PD11_ExpD11_Mastermix C_1.fcs.comp.


9.4 x10⁵ FSC-H FSC-H

Live Cells

Conclusion

Integrating automation in your workflow:

- Saves time
- Increases assay robustness
- Decreases risk of errors
- Provides audit trail
- Maximises lab efficiency
- Increases data quality and reproducibility

Thank you for your attention Any further question?

drugdevelopmentsolutions.com

@DDSDrugDev in @drugdevelopmentsolutions

@drugdevelopmentsolutions

