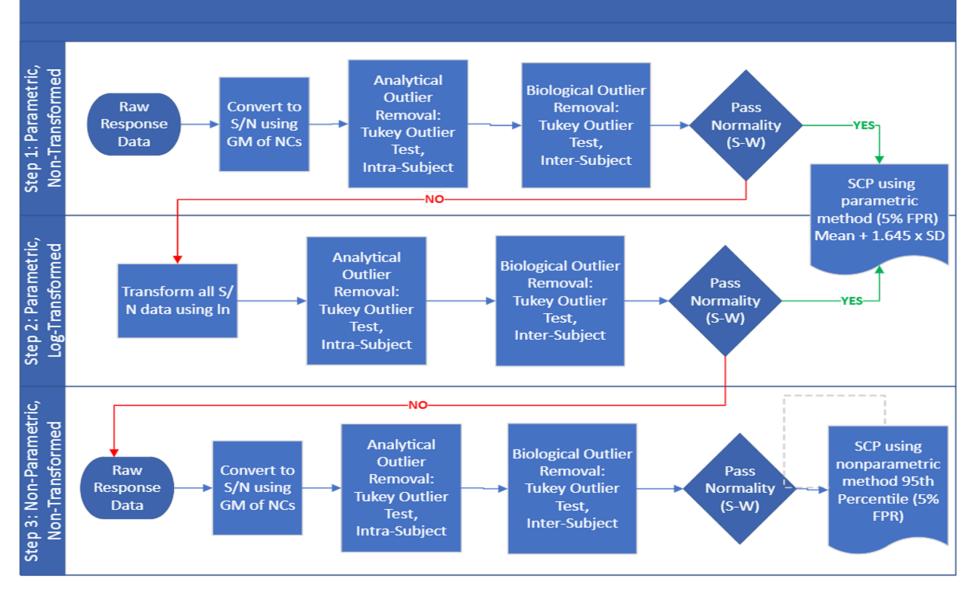


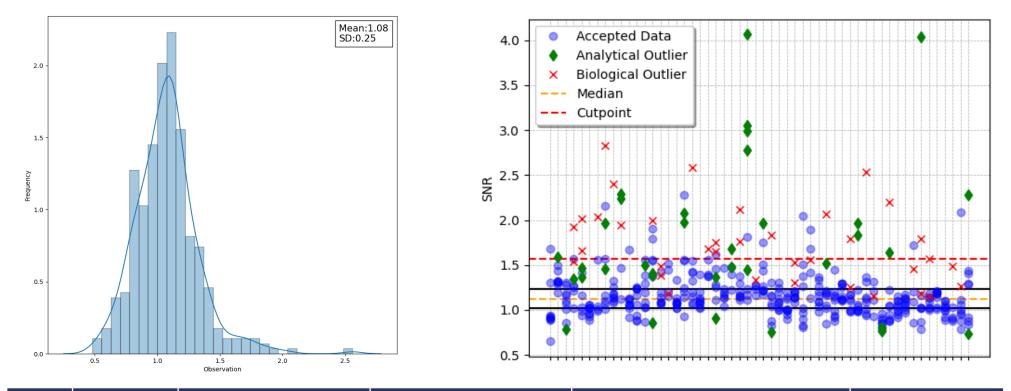
Random and Fixed Effects Model for Cut Point Determination

2022 EBF - Points to Consider on Cut Points 29 April 2022 Atiya Taqui Bioanalytical Chemistry, Gilead Sciences, Inc. Foster City, CA, USA

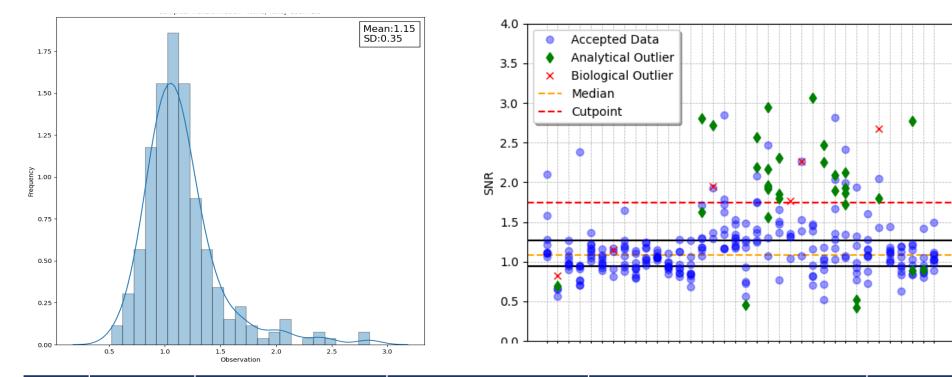

Common Sources of Variability and Concerns for Appropriate Cut Point (CP) Calculation

- Variations in assay background
- Variability in replicate observations of the same sample
- Poor critical reagents aggregation, non-specific binding, insufficient purification
- Commercial matrix
- Limited number of replicates for in-study CPs

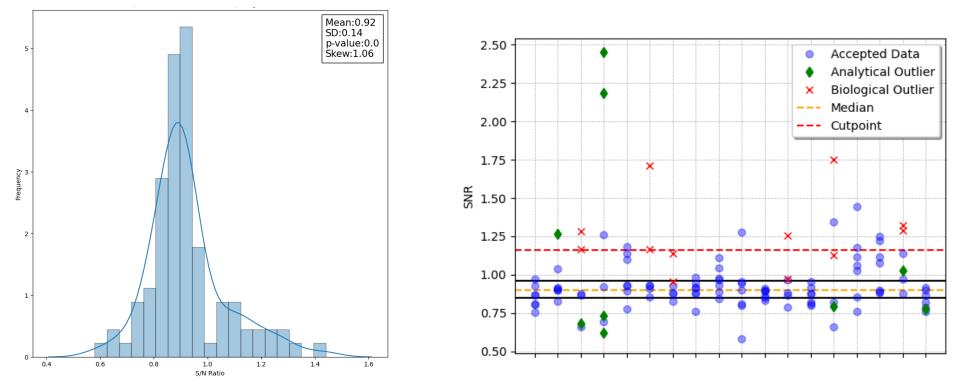
The Case Study - Overview


- Electrochemiluminescence (ECL) complex assay procedure with Solid Phase Extraction with Acid Dissociation (SPEAD)
- High background signal in the assay
- Cut points for normal human matrix (serum) and two different cancer type matrices were evaluated during validation
- High variability of sample response within disease populations (from commercial source) as well as normal healthy population
- In-study cut point for three different cancer type matrices was evaluated

Non-Model Approach to CP Calculation


- No NCs were removed. NC GeoMean was used (Median can also be used).
- No subjective removal of outliers was performed all outliers were statistically justified.

Normal Human Matrix_CP Analysis in Validation


IQR	CP (SNR)	Biological Outliers (No. of Subjects)	Analytical Outliers (No. of Data Points)	Total Data Points Used for CP Calculation	Normality Test (S-W)
1.5	1.48	4	28	380 out of 443 (50 subjects)	Failed
2.0	1.55	3	17	399 out of 443	Failed
3.0	1.59	3	10	406 out of 443	Failed

Cancer Type 1 Matrix_CP Analysis in Validation

IQR	CP (SNR)	Biological Outliers (No. of Subjects)	Analytical Outliers (No. of Data Points)	Total Data Points Used for CP Calculation	Normality Test (S-W)
1.5	1.79	1	33	261 out of 300 (50 subjects)	Failed
2.0	1.94	1	27	267 out of 300	Failed
3.0	2.09	None	17	283 out of 300	Failed

Cancer Type 2 Matrix_CP Analysis in Validation

IQR	CP (SNR)	.	Analytical Outliers (No. of Data Points)	Total Data Points Used for CP Calculation	Normality Test (S-W)
1.5	1.16	2	10	98 out of 120 (20 subjects)	Failed
2.0	1.28	2	6	102 out of 120	Failed
3.0	1.64	None	2	118 out of 120	Failed

7

Summary of CP Analysis in Validation

- Disease state has impact on CP value determined
- High variability between different runs/panels (analytical variability)
- Relatively high percentage of outliers removed
- Analyst-dependent variability was observed and confirmed with ANOVA test
 - Inability to identify which specific analyst data to remove from the data set due to high variability across entire study

Is there a statistical way to overcome the different sources of variability observed during validation?

Thinking Outside of the Box-Plot

<u>General Random Effects Model (REM)</u>: $Y_i = \mu + U_i + W_i$

where:

 $Y_i = S/N$ values

 μ = average response of entire population

U_i = random effect model on the Gaussian distribution

W_i = individual-specific random error term

<u>REM with Control for Fixed Effect (FE)</u>: $Y_i = \mu + \beta_{FE} + U_i + W_i$

where:

 β_{FE} = fixed-effect terms for assignable parameter (known effect)

Newlands Press Ltd Bioanalysis Volume 13, Issue 7, April 2021, Pages 551-563 https://doi.org/10.4155/bio-2019-0296

Methodology

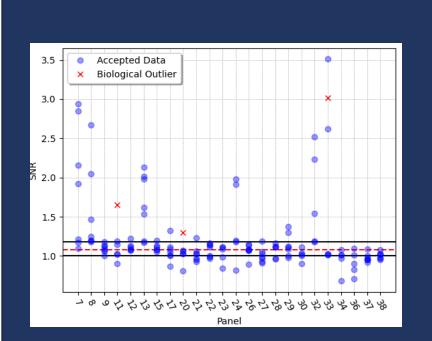
Statistical methods of screening cut point determination in immunogenicity studies

Meiyu Shen^{1,*} and Tianjiao Dai²

"The proposed approach of cut point calculation based on REMs can more appropriately identify the variance components in ADA data from a pre-study experiment design"

"Under current practices, the proposed REM statistical approach, may be helpful in alleviating the issue of pre-study and in-study design differences"

What is a Random Effects Model (REM)?


- A statistical approach that is able to control for <u>unassignable</u> parameters that lead to variability within the data set, also known as random effects.
- REM can be combined with fixed effects (FE), which are known (<u>assignable</u>) effects that lead to variability in the data set.
- Benefits of REM
 - Avoid unknowingly removing true variability of the population
 - Use modeling to remove impact of random sources of variability that might not have a specific root cause

In-Study Cut Point Run Design

- ≥50 pre-dose study samples
- n=3 replicates (instead of n=6) due to insufficient study sample volume
- \geq 2 analysts, over \geq 2 days
- Cut point in matrices from 3 different cancer type populations were evaluated using Random and Fixed Effect Model (R&FEM)

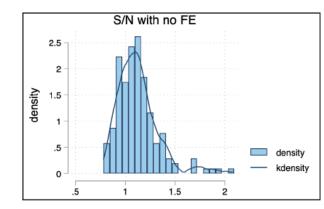
In-Study CP Analysis for Cancer Type 1 Matrix

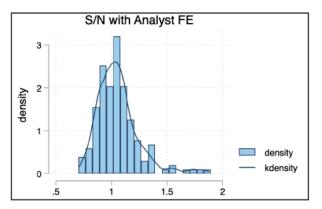
density

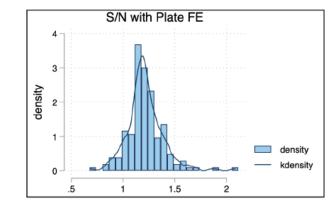
S/N with no FE density kdensity 1.5 2.5 3.5 S/N with Analyst FE density A-10-P-10 kdensity 2 density kdensity 1.5 2.5

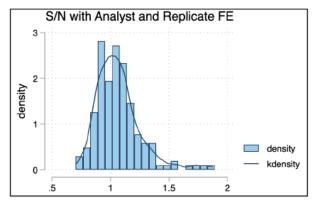
S/N with Plate FE

Due to high variability, no analytical outlier was statistically determined using Tukey Outlier Test (IQR 1.5 to IQR 3).

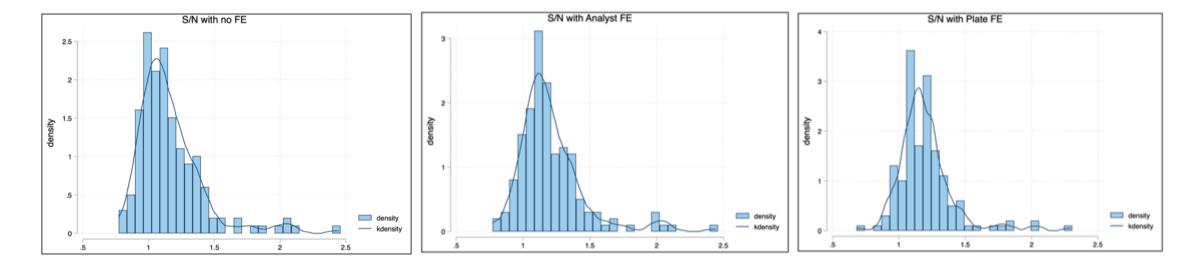

Statistical Analysis	Data Points	Normality Test	Cut Point (SNR)
Non-model	147* (50 subjects)	Failed	2.15
REM with no FE	150	Failed	2.33
REM with Plate FE	150	Failed	2.61
REM with Analyst FE	150	Failed	1.68


*1 Biological Outlier


In-Study CP Analysis for Cancer Type 2 Matrix


Replicate	Frequency
1	50
2	49
3	45

- One individual was depleted after the first replicate was run.
- Four individuals were depleted after the second replicate was run.



Statistical Analysis	Data Points	Normality Test	Cut Point (SNR)
REM with no FE	150 (50 subjects)	Failed	1.47
REM with Plate FE	150	Failed	1.49
REM with Analyst FE	150	Failed	1.37
REM with Analyst and Replicate FE	150	Failed	1.37 🗸

In-Study CP Analysis for Cancer Type 3 Matrix

Statistical Analysis	Data Points	Normality Test	Cut Point (SNR)
REM with no FE	159 (53 subjects)	Failed	1.70
REM with Plate FE	159	Failed	1.56
REM with Analyst FE	159	Failed	1.70 🗸

- REM with one or more fixed effect was the appropriate statistical approach for cut point calculation for the disease state matrices in this ADA assay.
- With data modeling, outliers do not need to removed from the data set and variability within the data set can be controlled for unassignable and assignable parameters.
- REM with or without fixed effects can be considered and accepted by regulators for data sets with too low or too high variabilities.

GILEAD

Thomas Tarnowski

ARIADNE® SOFTWARE

Stephanie Pasas-Farmer William Duncan

LaHoma Easterwood John Pirro