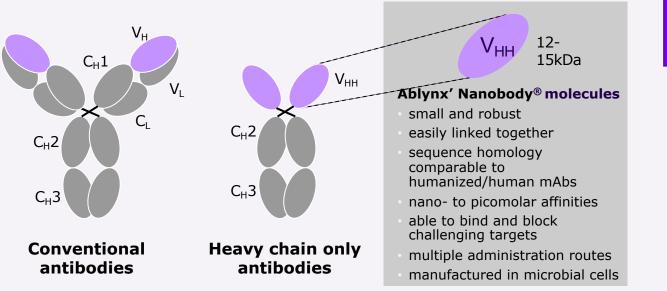


sanofi

Applying in-study cut-points in a rare-disease setting

EBF Spring Workshop 2022: Points to Consider on Cut-Points

Brendy Van Butsel


28 APR 2022

Presentation Overview

- 1 What is a NANOBODY[®] molecule?
- 2 Caplacizumab
- 3 Applied assay strategy for immunogenicity assessment in clinical trials conducted in aTTP patients
- 4 Approach for cut-point assessment
- 5 Approach for in-study cut-point assessment
- 6 Case study
- 7 Conclusions

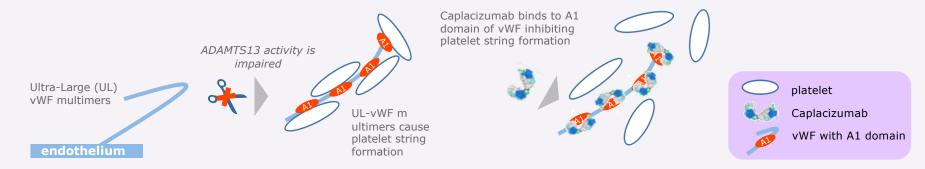
What is a NANOBODY[®] molecule?

Introduction - Caplacizumab

Bivalent anti-vWF Nanobody® molecule (28kD) for the treatment of aTTP

Cablivi

caplacizumat

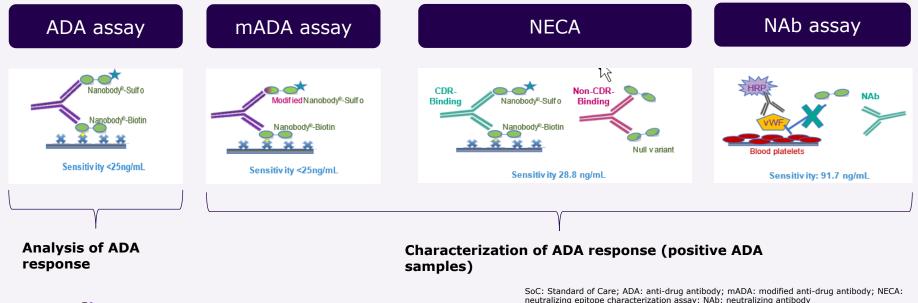

anti-vWF linker anti-vWF Nanobody® Nanobody® molecule molecule

vWF, von Willebrand factor; $\ensuremath{\mathsf{NANOBODY}}\xspace^{\ensuremath{\$}}$ is a registered trademark of Sanofi or an affiliate.

Caplacizumab

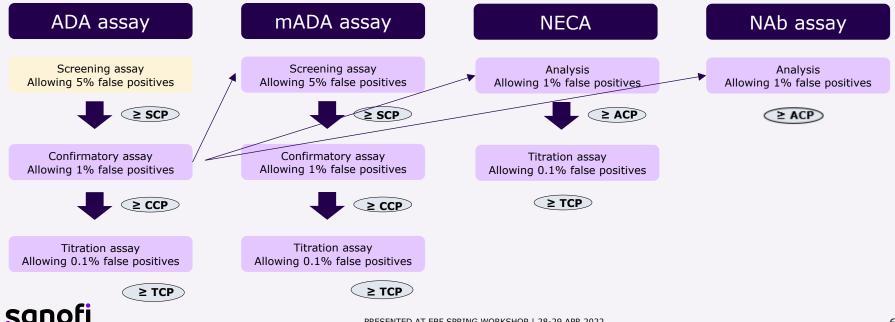
Anti-vWF activity to treat aTTP

- aTTP is an ultra-rare, life-threatening autoimmune blood clotting disorder (2-6 cases per million in Europe/US)
- · High unmet medical need with no previously approved therapeutic drug
- To date 10 clinical trials have been conducted with (n=144 1:1 treatment: placebo in pivotal Ph3)



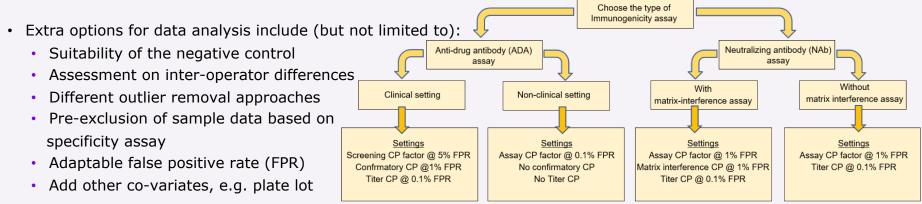
Caplacizumab's unique mode of action blocks binding of vWF to platelets which has an immediate effect on platelet aggregation and the ensuing micro-clot formation

ULvWF, Ultra-large von Willebrand Factor; ADAMTS13, a disintegrin and metalloprotease with thrombospondin type 1 motif, member 13. Figure adapted from M.L. Sargentini-Maier et al. 2019


Complex Immunogenicity Assay Strategy in Studies for aTTP

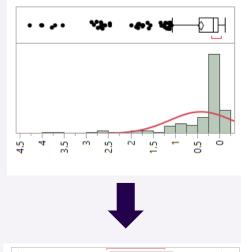
- Observed pre-existing ADA for caplacizumab ranged from 4-63% in various populations.
- Plasma exchange (SoC) complicates interpretation and required additional method(s).
- NECA introduced to increase drug tolerance and sensitivity of NAb characterization.

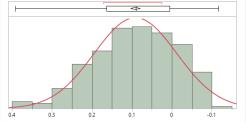
Full tiered approach for immunogenicity assessment


- Standard tiered approach for ADA confirmed positives \rightarrow characterize (titer, mADA, NAb/NECA)
- Additional titering of mADA & NECA provides information for potential impact based on magnitude of ADA/NAb response

Approach for cut-point assessment

Cut-point assessment using a fully automated JMP tool – ImmunoStat Simple


- Immunostat simple was developed, validated and implemented within Sanofi (presented at 13th EBF OS)
 - Based on the latest recommendations by regulators
 - Allows harmonized and fully regulatory compliant cut-point determination within Sanofi
 - Extremely user friendly for bioanalytical scientists via tick-box menus
 - Generates a compliant PDF report containing the cut-point assessments



Approach for cut-point assessment

Statistical approach

- Cut-points need to be set on a treatment naïve population
 - Both analytical and biological outliers are identified and excluded based on mixed-effects model. Per default, an iterative outlier approach based on Tukey's outlier criterion is applied
- Assessment performed on both log and untransformed normalized assay responses
- The response (log or untransformed) chosen for CP determination is based on the distributional properties of the respective blank population
- CP are determined based on the normality properties of the chosen response via a parametric, robust parametric or non-parametric approach

When is it needed?

- Cut-points set during validation/study may not be representative for another study
 - Demography of the subjects, medical history, disease state, race, sample collection/storage conditions,...
 - Long clinical trials \rightarrow change in assay reagents/materials
- Representativeness of the validation cut-point should be demonstrated otherwise the use of in-study cutpoints should be considered
 - Generally recommended/feasible for most phase II clinical trials and later
 - However, it is advised to evaluate the representativeness of the validation CP if deemed necessary and feasible (e.g. for clinical phase I or non-clinical trials)

How is it done?

	Pre-study validation cut-point setting		In-study cut-point setting
•	Analysis of a representative dataset (ethnicity, gender, race, demography,)	•	Analysis of a representative dataset (pre-dose samples) for a specific study
•	Analyze > 50 subject samples	•	Preferably, analyze > 50 subject samples
•	Each subject sample is analyzed 6x (i.e. 3x by 2 operators) in a balanced design	•	Each subject sample is analyzed 2x, 1x by 2 operators
•	Include all types of variability	•	Include most important types of variability (run & analyst variation)
•	Calculated using ImmunoStat Simple	•	Calculated using ImmunoStat Simple

How do we check whether a validation cut-point is representative for the study population?

- 1. Main driver: Comparison of variances and means of both blank populations (Devan et al.*)
 - Performed for both blank screening and confirmatory datasets (if applicable)
 - Comparison is to be performed on the log-transformed dataset except when both blank populations show a more normal distribution on the untransformed dataset

*Devan et al. Recommendations for Systematic Statistical Computation of Immunogenicity Cut-Points, AAPS Journal, Vol. 19, No. 5, September 2017

How do we check whether a validation cut-point is representative for the study population?

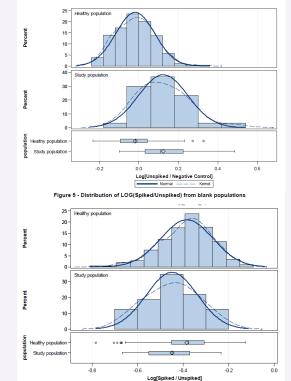
- 2. Supportive: Assessment of the FPR of a cut-point towards the study population
 - Assessed on the blank population (without outliers)
 - The FPR of a SCP targeted at 5% false positives can vary between 2 11% (Devan/Monte-Carlo simulation):
 - FPR calculated, falling outside these limits can trigger study specific CP setting
 - In case of a screen & confirmatory tier, solely performed for the screening dataset
 - FPR range does not apply for a CP targeted at 1% false positives (i.e. NECA & NAb assay)

Consequence

• When in-study cut-points are applied, critical assay characteristics defined during method validation must be re-evaluated.

	Non-clinical	Clinical			
Validation parameter	ADA assay	ADA/mADA assay	NAb assay	NECA	
Assay sensitivity	х	x	х	x	
Selectivity	N/A	x	х	×	
Precision of PC and NC samples in the screening assay set-up	x	x	x	x	
Precision of PC and NC samples in the confirmatory assay set-up	N/A	x	optional	N/A	
Drug tolerance	х	x	х	Х	
Target interference	N/A	x	х	Х	

Case study – Immunogenicity assays CP determination for a Phase II/III clinical trial


- Outline
 - A phase II/III clinical trial was conducted in 21 Japanese aTTP patients
 - A CP was set during validation on healthy commercial Japanese subject samples for the different immunogenicity assays to be applied during the clinical trial
 - ADA, mADA, NECA and NAb assay
 - For in-study justification, pre-dose samples were analyzed twice by 2 different operators over 2 analyses
- Aim
 - Evaluation on representativeness of the validation CP towards the study population
 - Comparison of the blank validation and study population in terms of means & variances
 - In-study CP were calculated simultaneously
 - Performed for both log-transformed screening and confirmatory (if applicable) dataset

Case study – Immunogenicity assays CP determination for a Phase II/III clinical trial

 Representativeness of the <u>ADA assay</u> validation CP(F) on the study population

Assay	ADA Screening assay	ADA confirmatory assay
Variances (p-value 0.05)	0.0591	0.9436
Means (p-value 0.05)	<0.0001	0.0021
FPR* (Validation CPF)	46.7%	NA
Validation CP(F)	1.150	49.22%
In-study CP(F)	1.391	50.78%

*FPR preferably between 2 and 11% (Devan/Monte-Carlo simulation)

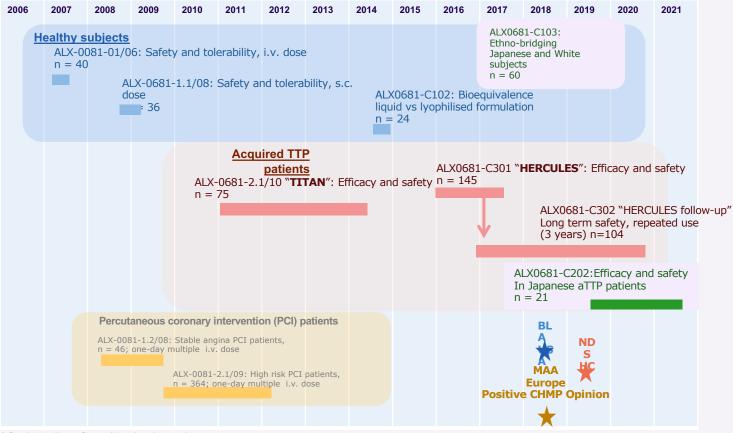
Normal — — Kernel

Case study – Immunogenicity assays CP determination for a Phase II/III clinical trial

• Representativeness of the validation CP(F) towards study population

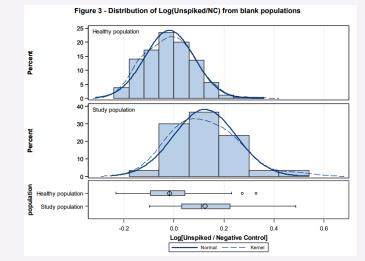
Assay	ADA Screening assay	ADA confirmatory assay	mADA screening assay	mADA confirmatory assay	NECA assay	NAb assay
Variances (p-value 0.05)	0.0591	0.9436	0.1219	0.0164	<0.0001	0.5316
Means (p-value 0.05)	<0.0001	0.0021	<0.0001	<0.0001	<0.0001	<0.0001
FPR* (Validation CPF)	46.7%	NA	11.8%	NA	0%	21.1%
Validation CP(F)	1.150	49.22%	1.054	28.47%	1.262	1.243
In-study CP(F)	1.391	50.78%	1.083	38.85%	1.216	2.057

*FPR of SCP preferably between 2 and 11% (Devan/Monte-Carlo simulation). Not applied for NECA and NAb assay


Conclusions

- Representativeness of the validation cut-points should also be demonstrated in clinical studies with a limited number of samples.
- In case in-study cut-points need to be applied:
 - Applicable for the whole tier (i.e. screening, confirmatory and titration; if applicable)
 - Critical assay characteristics need to be re-assessed
- A big thank you to all the study participants and the whole caplacizumab team.

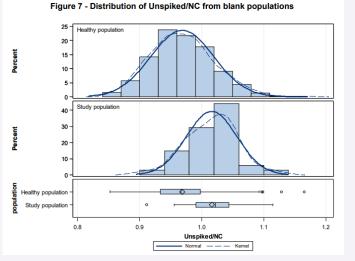
Back-up slides



Caplacizumab clinical development program

ADA screening assay CP determination for a Phase II/III clinical trial

Assessments	Validation	In-study
CPF (5% FPR)	1.150	1.391
CPF (0.1 % FPR)	1.298	1,667
CCP (1 % FPR)	49.22	50.78
FPR on study population	46.7%	
Variances	0.0591	
Means	<0.0001	
Population	Healthy Japanese	aTTP Japanese



- Significant differences in means noted
- \rightarrow Use in-study CPF

Consequence: Re-calculation of all validation parameters (assay sensitivity, selectivity, ...) using the new instudy specific CPs

mADA screening assay CP determination for a Phase II/III clinical trial

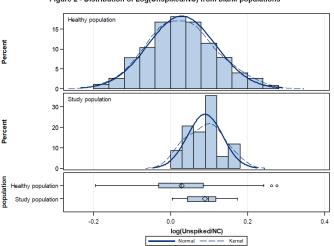
Assessments	Validation	In-study
CPF (5% FPR)	1.054	1.083
CPF (0.1 % FPR)	1.136	1.142
CCP (1 % FPR)	28.47	38.85
FPR on study population	11.8%	
Variances	0.1219	
Means	<0.0001	
Population	Healthy Japanese	aTTP Japanese

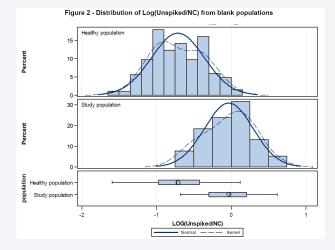
- Significant differences in means noted
- \rightarrow Use in-study CPF (for the different tiers)

Consequence: Re-calculation of all validation parameters (assay sensitivity, selectivity, ...) using the new instudy specific CPs

NECA CP determination for a Phase II/III clinical trial

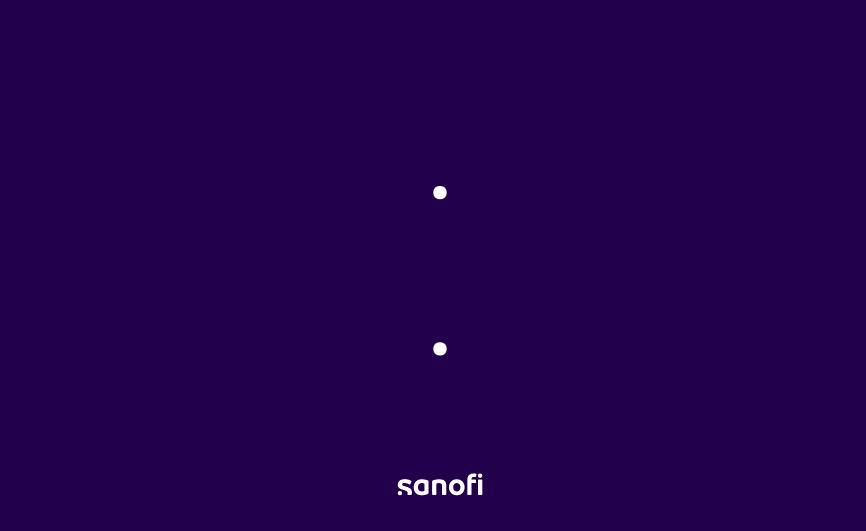
Assessments	Validation	In-study
CPF (1% FPR)	1.262	1.216
CPF (0.01 % FPR)	1.349	1.259
FPR of study population	0.0 %	-
Variances	< 0.000)1
Means	< 0.0001	
Population	Healthy Japanese	aTTP Japanese




Figure 2 - Distribution of Log(Unspiked/NC) from blank populations

- · Significant differences in variances and means noted
- \rightarrow Use in-study CPF (for the different tiers)

Consequence: Re-calculation of all validation parameters (assay sensitivity, selectivity, ...) using the new instudy specific CPs


NAb assay CP determination for a Phase II/III clinical trial

Assessments	Validation	In-study	
CPF (1% FPR)	1.243	2.057	
FPR of study population	21.1%	_	
Variances	0.5316		
Means	< 0.0001		
Population	Healthy Japanese	aTTP Japanese	

- Significant differences in means noted
- \rightarrow Use in-study CPF (for the different tiers)

Consequence: Re-calculation of all validation parameters (assay sensitivity, selectivity, ...) using the new instudy specific CPs

