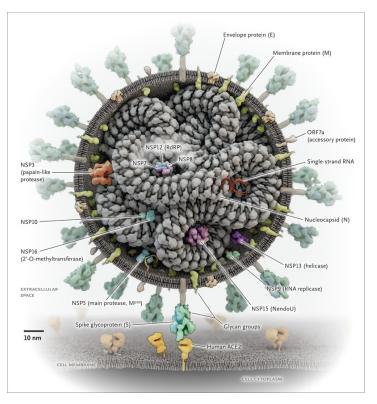


Analysis of SARS-CoV-2 using LC-MS Peptide Enrichment for Clinical Research

Dominic Foley Principal Scientist Waters, Wilmslow, UK


Overview of SARS-CoV-2 and the role of LC-MS/MS in its detection for clinical research

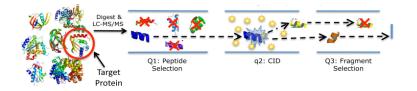
Overview of a Kit-based LC-MS RUO Workflow for detecting SARS-CoV-2 NCAP Peptides

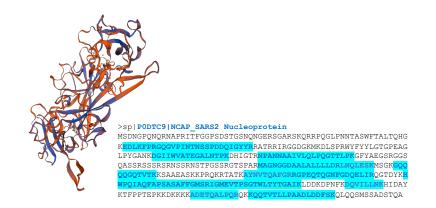
Performance Characteristics of the Kit-based LC-MS RUO Workflow

SARS-CoV-2 virion and it's proteins

- Spike Protein (S)
 - Recognizes human angiotensin-converting enzyme 2 in the initial stage of infection
- Nucleocapsid Protein (NCAP or N)
 - Involved in (viral) replication and transcription of the genome
 - Structural component of the viral particle

Essential for survival

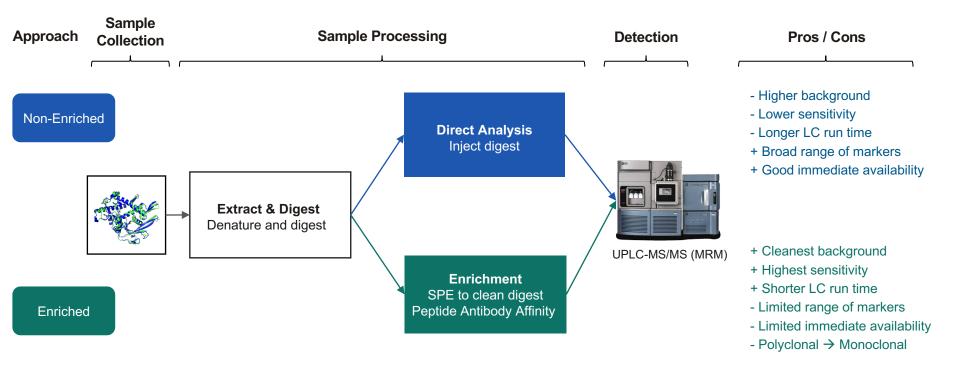

Protein	Intensity	Percentage	MW (kDa)	
PODTC9 NCAP_SARS2	3.1998E+11	88.6	46	
PODTC2 SPIKE_SARS2	17745000000	4.9	141	
PODTC5 VME1_SARS2	13582000000	3.8	25	
PODTD1 R1AB_SARS2	4608000000	1.3	794	
PODTD2 ORF9B_SARS2	2910500000	0.8	11	
PODTC3 AP3A_SARS2	1941200000	0.5	31	
PODTC6 NS6_SARS2	307510000	0.1	7	
PODTC4 VEMP_SARS2	49604000	0.0	8	


https://www.nejm.org/doi/full/10.1056/NEJMcibr2007042 https://www.biorxiv.org/content/10.1101/2020.04.23.057810v1.full.pdf

Why LC-MS for SARS-CoV-2 Analysis?

- SARS-CoV-2 is a protein-rich viral particle
 - Orthogonal quantitative read-out of digested peptides that correspond to the protein(s) of interest
 - MS based detection compatible with conventional small molecule quantitative systems
- Multi-analyte detection capabilities; other viruses or biomarkers could potentially be detected within the same experiment
- As LC-MS directly detects proteins and peptides, contamination isn't amplified, as might be the case with PCR

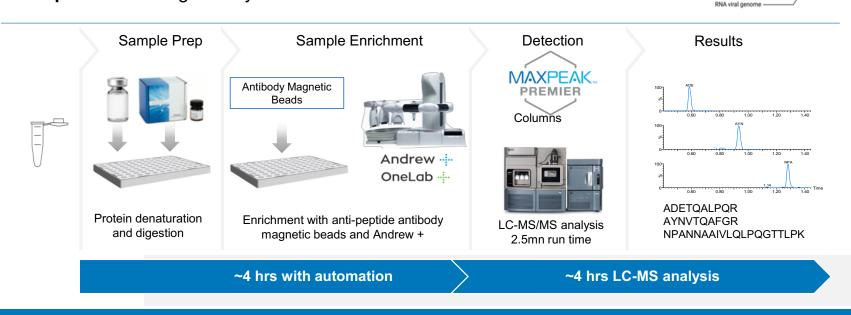
Converting Cts to mols for LC-MS


Ct	*Viral Load, RNA/μL	*NCAP Protein amol/µL	*NCAP Peptide amol/µL
20	1.74x10 ⁶	2,900	2,900
25	5.59x10 ⁴	92.8	92.8
30	1.79x10 ³	2.97	2.97
35	57.4	0.0953	0.0953
40	1.84	0.00305	0.00305

*estimates based on cell culture studies

SARS-CoV-2 Workflow Strategies

Enriched and Non-Enriched Workflows

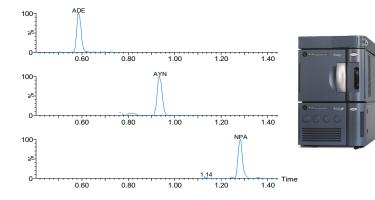


Waters SARS-CoV-2 LC-MS Workflow

Research Use Only

- Direct detection and quantification of 3 signature NCAP peptides: ADE, AYN, NPA
- NCAP proteins: most abundant and least prone to genetic mutation
- No replication of target analytes: reduced contamination and erroneous results

Envelope (

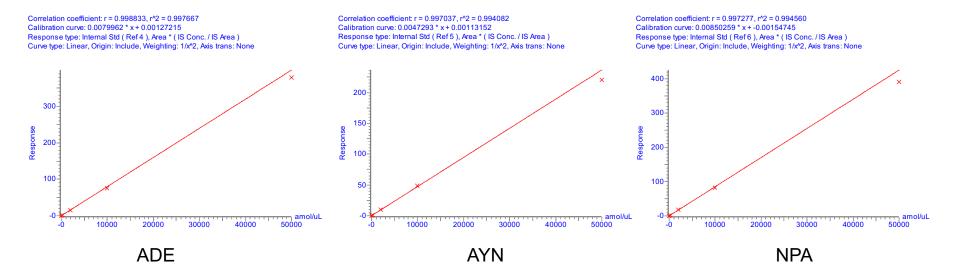

Waters

THE SCIENCE OF WHAT'S POSSIBLE.™

LC-MS/MS Conditions

- ACQUITY UPLC I-Class FTN
 - Column: ACQUITY Premier Peptide BEH C₁₈, 300Å, 1.7µm, 2.1mm x 30mm
 - Mobile Phase A: Water with 0.1% formic acid
 - Mobile Phase B: Acetonitrile with 0.1% formic acid
 - Column Temperature: 40°C
 - Injection volume: 20µL
 - Run time: 1.8 minutes (2.5 minutes cycle time)

- Xevo TQ-XS
 - Ion mode: ESI+
 - Capillary Voltage: 0.5 kV
 - Desolvation Temperature: 600°C
 - Desolvation Gas: 1000L/Hr
 - Source Temperature: 150°C
 - Resolution: MS1 & MS2 0.75 FWHM

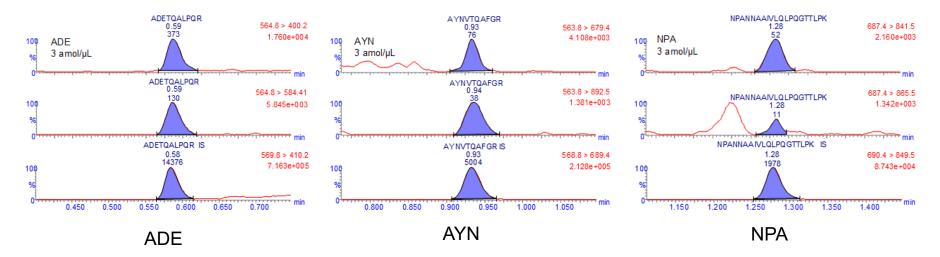


Peptide	MRM		Cone (V)	Collision (V)	
	564.8 > 400.2	Quantifier	35	19	
ADE	564.8 > 584.4	Qualifier	35	20	
	569.8> 410.2	SIL	35	19	
	563.8 > 679.4	Quantifier	35	19	
AYN	563.8 > 892.5	Qualifier	35	19	
	568.8 > 689.4	SIL	35	19	
	687.4 > 841.5	Quantifier	35	18	
NPA	687.4 > 865.5	Qualifier	35	23	
	690.4 > 849.5	SIL	35	18	
	588.8 > 400.2	Quantifier	35	19	
AYE*	588.8 > 777.4	Qualifier	35	15	
	569.8> 410.2	SIL (ADE)	35	19	

*Delta variant mutation D377Y

Calibration Performance

- Peptide calibration lines were prepared from 3 50,000 amol/µL in VTM (Virus Transport Media)
- Correlation coefficients (r²) were >0.99


Waters

THE SCIENCE OF WHAT'S POSSIBLE.™

Analytical Sensitivity

- Analytical sensitivity at 3 amol/µL* in VTM after sample enrichment for 3 peptides
 - ADE and AYN provide the greatest analytical sensitivity, with peaks detected in all qualifier traces
 - NPA provides lower analytical sensitivity, with much lower qualifier ion peak areas

Precision

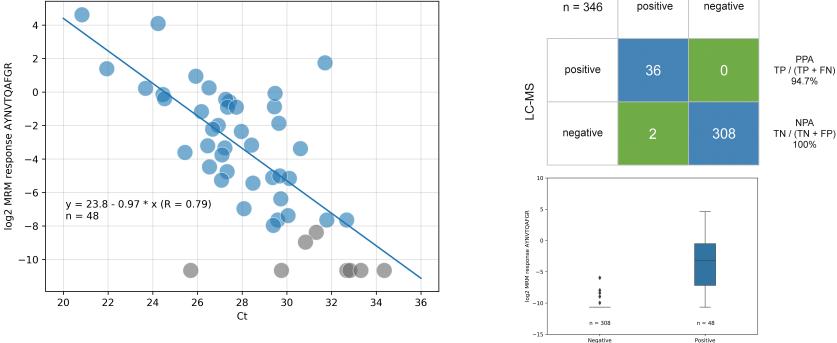
NCAP Protein Derived Peptides and Spiked Peptides

- In-house QCs using spiked NCAP and spiked peptides (ADE, AYN and NPA) into VTM at 3, 10, 400 and 25,000 amol/µL
 - Precision was performed over 5 separate occasions, with 5 replicates at each concentration
 - Spiked Peptides
 - Intra-day and inter-day precision was ≤17.4% CV at 3 amol/µL and ≤12.4% CV from 10 – 25,000 amol/µL
 - Spiked NCAP Protein
 - Intra-day precision was ≤18.8% CV at 3 amol/µL and ≤10.8% CV from 10 – 25,000 amol/µL
 - Inter-day precision was ≤18.8% CV from 3 25,000 amol/µL

	Spiked Peptide (amol/µL)								
	Intra-Day Precision				In	Inter-Day Precision			
	3	10	400	25000	3	10	400	25000	
ADE	9.0%	5.0%	2.0%	2.9%	12.9%	8.4%	2.6%	3.3%	
AYN	12.5%	6.8%	2.4%	3.0%	15.2%	10.2%	6.8%	4.7%	
NPA	17.1%	12.4%	3.0%	4.5%	17.4%	10.9%	5.2%	3.6%	

	Spiked NCAP Protein (amol/µL)								
	Intra-Day Precision					Inter-Day Precision			
	3	10	400	25000		3	10	400	25000
ADE	18.4%	7.8%	2.5%	3.1%		11.5%	16.8%	18.8%	11.8%
AYN	13.2%	10.2%	2.4%	2.9%		11.6%	17.6%	18.5%	11.1%
NPA	18.8%	10.8%	4.1%	3.8%		11.6%	15.4%	18.2%	13.3%

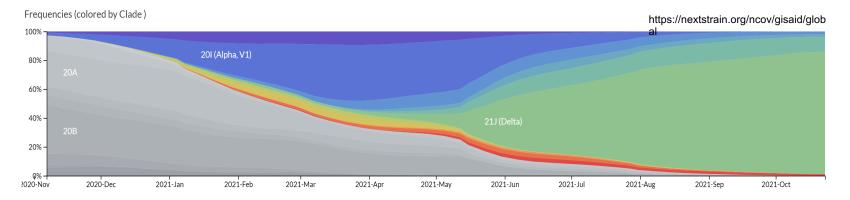
Proof of concept


Results based on a similar workflow

Waters THE SCIENCE OF WHAT'S POSSIBLE.™

positive negative

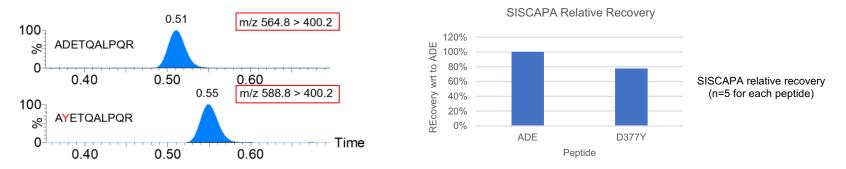
RT-PCR diagnosis


RT-PCR

Rapid and Sensitive Detection of SARS-CoV-2 Infection Using Quantitative Peptide Enrichment LC-MS/MS Analysis. Hober et al. https://elifesciences.org/articles/70843

The Delta Variant

 As of July 2021, the SARS-CoV-2 Delta (B.1.617.2) variant rapidly became the dominant form of the virus across the globe



- Previous VoCs did not impact the selected peptides ADE, AYN and NPA
- Upon examining the Delta variant, it was noted that the ADE peptide was affected, with increased prevalence of an amino acid substitution adjacent to the N-terminus (D377Y)
 - Original ADE: ADETQALPQR
 - Variant D377Y: AYETQALPQR

Analysis of Delta Variant NCAP Peptides

- The variant peptide AYE (D377Y) was synthesized and added to a solution containing ADE, AYN and NPA
- All peptides were then added to viral transport medium (VTM) and extracted using the SARS-CoV-2 LC-MS Kit (RUO) and analyzed over a single experimental run
- Skyline was used to identify MRM transitions for the variant peptide and analysis was performed using the ACQUITY UPLC I-Class and Xevo TQ-XS

- No significant changes to the method are required to identify the new peptide target
- The variant peptide can be captured by the SISCAPA ADE wildtype monoclonal antibody
- SARS-CoV-2 LC-MS Kit (RUO) allows the <u>identification</u> of Delta variant and its <u>differentiation</u> from previous variants of concern in one experiment

A kit-based LC-MS/MS method can be used to directly detect and quantify SARS-CoV-2 NCAP peptides for clinical research

The SARS-CoV-2 LC-MS Kit (RUO) allows direct detection and quantification of three SARS-CoV-2 NCAP peptides with excellent analytical sensitivity, analytical selectivity, reproducibility and speed.

LC-MS can be used as a complementary approach to PCR for research, with the added benefit of using the multi-analyte detection capabilities of LC-MS/MS to also monitor biomarkers as part of SARS-CoV-2 longitudinal research studies

Acknowledgements

- Waters Chemistry, SciOps, UK Sales
- Cov-MS Consortium
- University Collaborations
- UK NHS
- SISCAPA

Southampton

viapath

NHS