

14th EBF Open Symposium-Immunogenicity Strategies

How immunogenicity risk assessment can translate into an immunogenicity testing strategy

25th Nov 2021 / Yvonne Katterle

Agenda

// Immunogenicity Risk Assessment

- // Introduction
- // Risk Identification
- // Risk Analysis and Evaluation

// Immunogenicity Risk Management

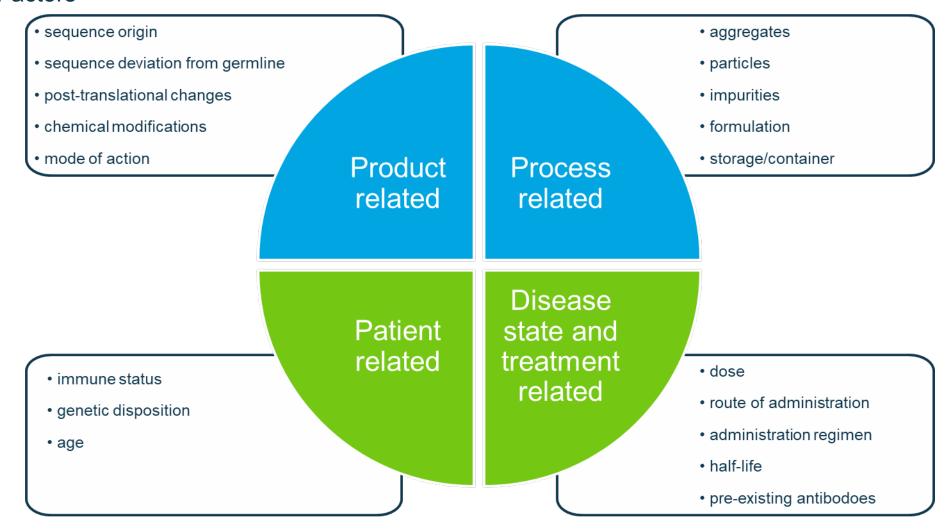
- // Sampling Strategy
- # Bioanalytical Testing Strategy
- // Example High Risk Molecule
- // Conclusion

Introduction

Introduction

- // Immunogenicity Risk ≠ Project Risk
 - // consequences of an immune reaction can range from ADA without any clinical significance to
 severe life-threatening conditions
 - # assigning an immunogenicity risk to a product ensures appropriate risk mitigation and management of patient's safety
- // Immunogenicity risk assessment is a systematic approach
 - identification, analysis, evaluation, control, review, communication and management of potential immunogenicity risks
 - multidisciplinary task involving experts from research, CMC, quality, preclinical and clinical as well as safety and regulatory functions
 - Iterative process throughout the life-time of the product from research to market access, where risk levels might change with project progression

Iterative Process



Risk Identification

Immunogenicity Risk Identification

Risk Factors

Immunogenicity Risk Identification

Potential Clinical Consequences

- No impact on PK-PD, efficacy or safety
- // Change in PK-PD relationship, target engagement
- // Loss of efficacy
- // Immune related adverse events
 - // Cytokine release
 - # Hypersensitivity or allergy
 - // Unintended mode of action via ADA-drug complexes
- // Cross reactivity of ADA to endogenous protein

Risk Analysis and Evaluation

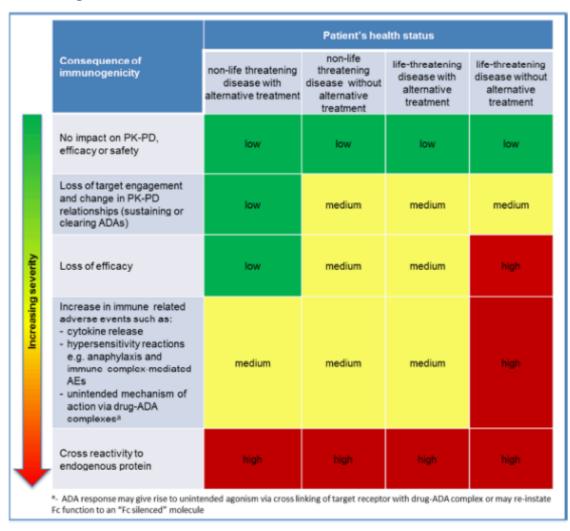
Immunogenicity Risk Analysis and Evaluation

Analysis and Evaluation Process

- Analysis of all potential clinical consequences
- Used as basis for decision on risk mitigation

Clinical consequences

Risk Mitigation


- Analysis of all risk factors in collaboration with functional experts
- Propose and decide on implementation of mitigation strategies
- Decision on acceptable risk factors and mitigation strategy

 Assign over all immunogenicty risk level based on clinical consequences

Assignment of risk level

Assignment of Risk Level

- Assignment of the immunogenicity risk level should mainly be based on the patient's health status and the anticipated or observed clinical consequences
 - Although all product and patient related factors have been considered it is difficult to determine a score or threshold to directly assess the impact of each factor to the overall risk
- // The overall immunogenicity risk level may change during product development, e.g. when ADA incidences have been established during development

Immunogenicity Risk Management

Immunogenicity
Risk
Management
Plan

Immunogenicity Risk Management Plan

Content

- Summarize any recommended mitigation actions
- Specify the immunogenicity testing strategy
 - # Based on the assigned over immunogenicity risk

Sampling strategy

- // Pre- and post exposure samples
- // Timing of ADA sample collection (low drug levels, ability to detect transient and persistent immune responses, establish relationship to exposure/PK)
- // Unscheduled sampling in case of suspected immune-related adverse events

Bioanalytical testing strategy

- Appropriate assays for PK and ADA to be developed
- // Consider PD and Biomarker Assays as well
- // Timing of sample analysis (batch-wise or real time)
- # Further characterization of the immune response

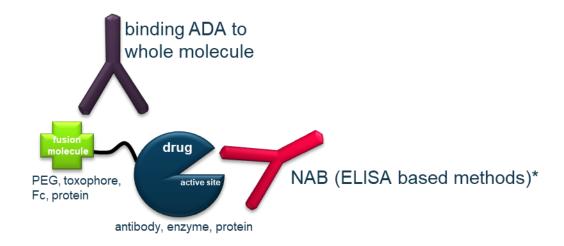
Immunogenicity Risk Management

Bioanalytical Testing Strategy

Based on Risk Assignment

Immunogenicity Risk Level	Molecule Type	Project Development Stage		
		Preclinical	Phase I	Phase II, III, IV
low	standard	basic	basic	basic
	complex	basic	basic	extended
medium	standard/complex	basic	basic/extended	extended
high	standard/complex	basic/extended	extended	extended

Adaptation of the Testing Strategy may become necessary once first data are available



Basic Approach

- Standard molecule
 - // e.g. Monoclonal antibody or protein

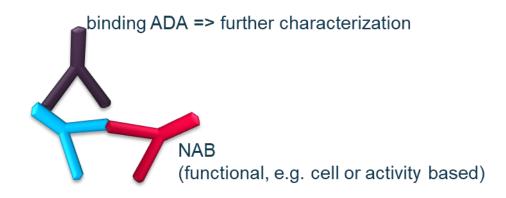
- // Complex molecule
 - // e.g. fusion protein

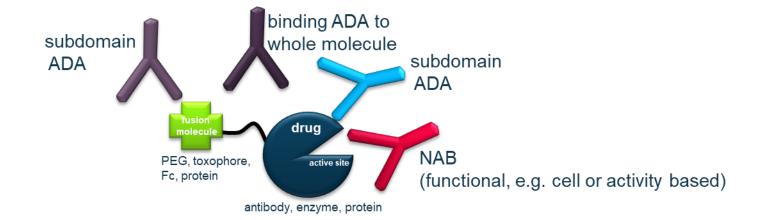
Extended Approach

- Standard molecule
 - // e.g. Monoclonal antibody or protein
 - // Risk based:

Real time monitoring

For replacement therapies: cross reactivity to endogenous counterpart

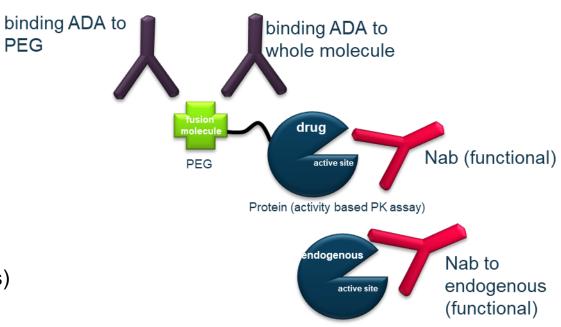

Epitope mapping


IgM antibodies

IgE antibodies

- // Complex molecule
 - # e.g. fusion protein
 - // Risk based:

As above plus subdomain analysis



Example High Risk Project

- Complex molecule
 - // replacement therapy, pegylated
 - // Planned risk-based testing strategy:

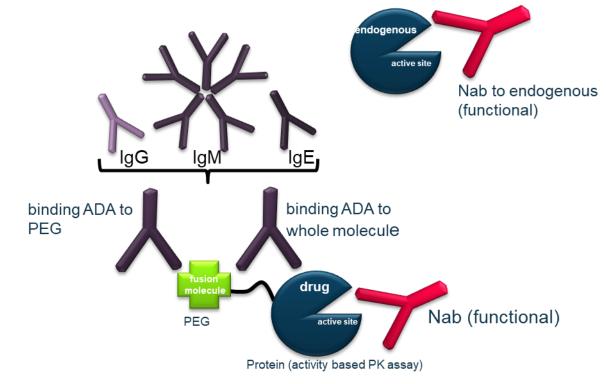
Real time monitoring for cross reactivity to endogenous counterpart (NAB)

ADA to whole molecule and PEG (subdomain analysis)
Product specific NAB in case of ADA positive samples

Example High Risk Project

Adapted testing strategy (based on observed clinical consequences):

After some cases of loss of efficacy and hypersensitivity in special patient population:


Sampling in extension cohort more frequently during first exposure days

IgM antibodies against PEG => optimized confirmatory step to increase sensitivity

Evaluation of hypersensitivity reactions:

IgE antibodies

HCP antibodies

Conclusion

- // Immunogenicity Risk Assessment starts early during development of Biologics
- Product, process, patient and treatment related risk factors need to be identified and addressed by appropriate mitigation strategies
- During the development process the overall immunogenicity risk can change depending on successful mitigation actions or availability of clinical data
- A general immunogenicity testing strategy can roughly be developed based on the risk assignment but may need to be adapted
 - // to specific product and project needs
 - // after observed clinical consequences

Acknowledgements

- Bayer Immunogenicity Alignment Team
 - Cross functional team giving advice on how to perform Immunogenicity Risk Assessment and Management (Best Practice Document)

Bayer Bioanalytics Team

Thank you!

Bye-Bye

