ADVANCES IN ADA, PK, AND BIOMARKER IMMUNOASSAYS TO MEET DEMANDS FOR ASSAY SPEED AND PERFORMANCE

14th EBF Open Symposium, 24-26 November 2021

John Chappell, BSc CChem CSci FRSC, Director of Scientific Support, EMEA and Asia Pacific

AGENDA

- Singlet analysis for ADA detection
- Development of a generic ADA assay for preclinical studies
- Extending sensitivity for PK and biomarker assays

Research Article

For reprint orders, please contact: reprints@future-science.com

Bioanalysis

SINGLET VS DUPLICATE GYROLAB PEMBROLIZUMAB IMMUNOGENICITY ASSAY COVANCE

Goals of microfluidic Gyrolab ADA assay:

Automate assay using Mixing CD 96

Evaluate singlet vs duplicate analysis

Evaluate drug tolerance of assay

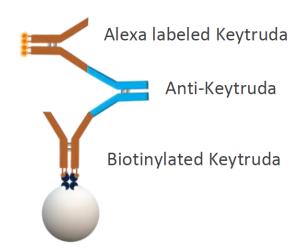
Comparing singlet and duplicate immunogenicity assay in human plasma for pembrolizumab using Gyrolab[®]

Johannes L Stanta*, 10, Hannah Craig1, Christopher Smith1 & John Chappell2

Published Online:30 Apr 2021
 https://doi.org/10.4155/bio-2021-001

¹Covance Laboratories Limited, Harrogate, North Yorkshire, UK

²Gyros Protein Technologies AB, Uppsala, Sweden

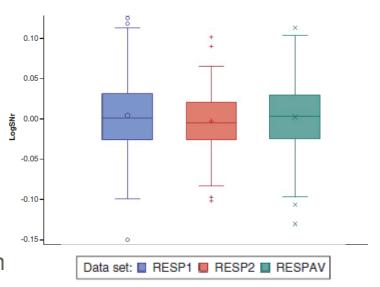

^{*}Author for correspondence: i.stanta@gmail.com

PEMBROLIZUMAB METHOD — BRIDGING ASSAY

- Capture: Biotinylated pembrolizumab
- Detect: Alexa Fluor 647-labeled pembrolizumab
- Positive control:
 Hu IgG1 anti-pembrolizumab Ab (BioRad)
- Mixing CD 96
- Gyrolab xP workstation

· Method sequence: analyte, acidic buffer, master mix/neutralization

Precision of screening assay — no improvement with duplicates


Between run precision over six runs, analyzed by three analysts.

Precision	Positive control	Run 1	Run 2	Ave
Whole CD precision	LPC	7.1%	3.4%	4.0%
	HPC	6.0%	7.7%	6.3%
Inter-run precision	LPC	8.0%	8.4%	7.9%
	HPC	5.5%	6.1%	5.6%

CD: Compact disc; HPC: High positive control; LPC: Low positive con

LPC: 50 ng/mL; HPC: 10,000 ng/mL

Box plots of screening data (outliers excluded)

Singlet and duplicate (ave. of 2 runs) values showed no significant improvements to the data quality by using the average result over a single measurement

DRUG TOLERANCE

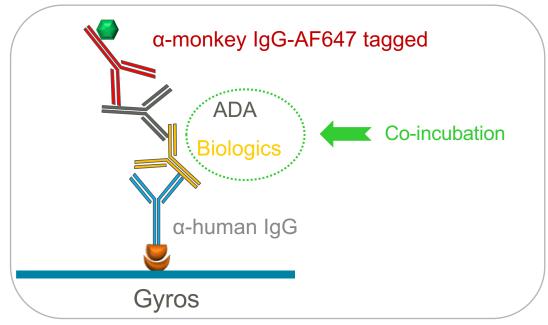
- Assay drug tolerance calculated to be 1796 μg/mL pembrolizumab at 50 ng/mL PC
 - Tested at 50, 100, 200, 500 and 1000 μg/mL
 - Positive control at 50, 100 and 250 μg/mL
 - All response levels above cut point

- Higher drug tolerance than Gyrolab assay protocol
 - Gyrolab assay protocol drug tolerance of 640 μg/mL at 100 ng/mL PC

	Calculated drug tolerance for each cutpoint (μg/mL)				
PC level (ng/mL)	Measurement 1 (± difference to ave)	Measurement 2 (± difference to ave)	Ave		
50	1779 (-17)	1832 (+36)	1796		
100	2642 (-14)	2685 (+29)	2656		
250	2616 (-5)	2632 (+11)	2621		

SUMMARY

- Gyrolab ADA assay using mixing CD automates acid dissociation
- High precision (<15%) for both Gyrolab assay protocol and Covance developed assays
- Drug tolerance (640 and >1000 µg/mL for Gyrolab and Covance assays, respectively) appropriate for clinical use
- Automation and use of singlet analysis increases productivity for bioanalytical laboratories
- Significant time savings



GENERIC ADA ASSAY

Developed by: Romain Gauchet and Franck Levasseur, DMPK Department – Biokinetics Servier

ADA GENERIC METHOD: FORMAT IN MONKEY

<u>Benefits</u>: « Plug and Play method » → no need to tag each new Biologics with biotin, just need to coat biotinylated antihuman IgG to quantify all ADAs targeting the Biologics under development

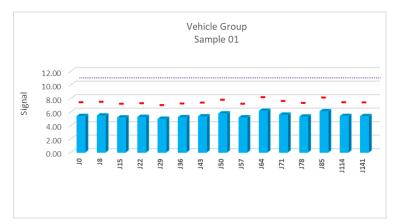
<u>Limitations</u>: Method only works for IgG-based biologics; not working with other therapeutic protein structures (e.g hormone)

The challenge to validate the format of this generic method has been to prepare a generic positive control and to identify a suitable and reliable cut-point strategy

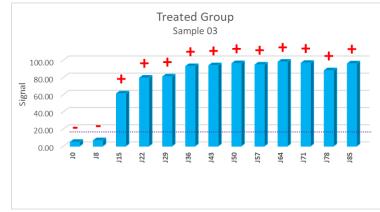
GENERIC METHOD VS SPECIFIC METHOD

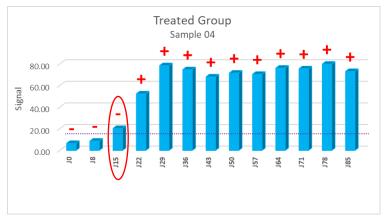
Tested Biologics:

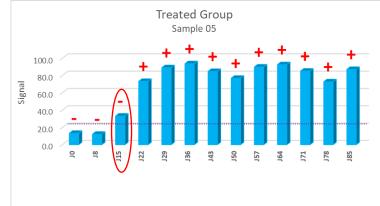
- Compound A (monoclonal Ab)
- Compound B (IgG-based compound)
- Compound C (IgG-based compound)

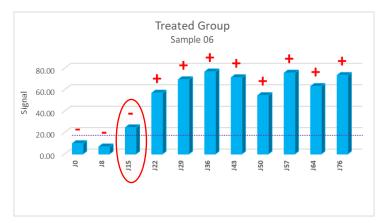

Comparison of ADA results between validated/qualified method and generic method

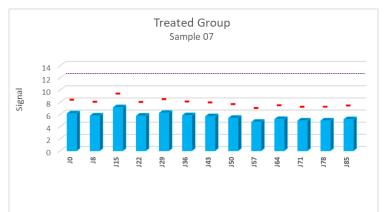
Compound A	Monoclonal antibody	lgG4	Bridging	
Compound B	IgG-based compound	lgG1	Sandwich	Generic method
Compound C	IgG-based compound	lgG1	Sandwich	

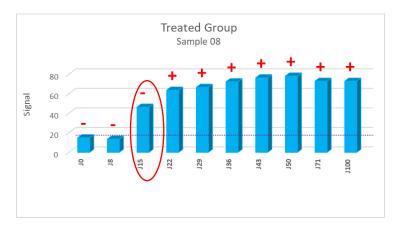


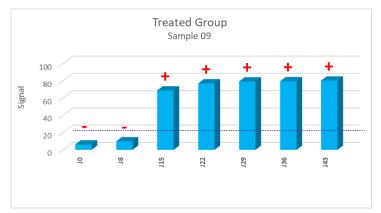



GENERIC METHOD VS SPECIFIC METHOD: COMPOUND A


Calculated Preliminary Cut-Point = 1.25* Mean NC


-/+: Specific Method Results



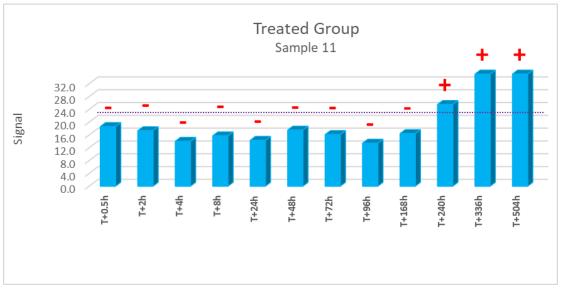


GENERIC METHOD VS SPECIFIC METHOD: COMPOUND A

..... Calculated Preliminary Cut-Point = 1.25*

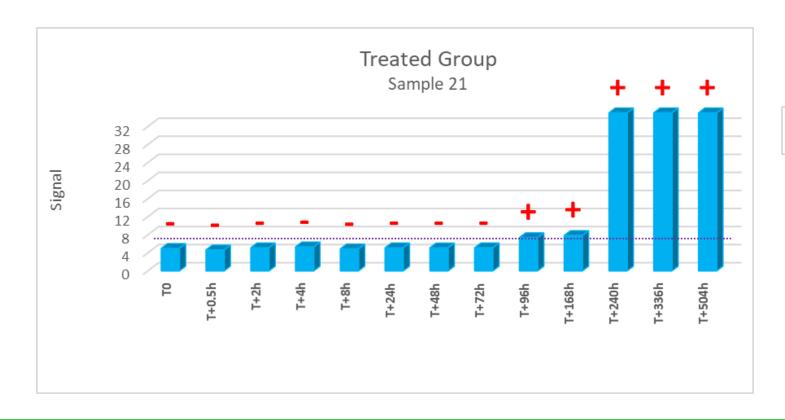
Mean NC

-/+: Specific Method Results


Good correlation between Specific and Generic Method Format works well and trends of signal correlate between both methods

GENERIC METHOD VS SPECIFIC METHOD: COMPOUND B

..... Calculated Preliminary Cut-Point = 1.25* Mean NC


-/+: Specific Method Results

Good correlation between Specific and Generic Method
Format works well and trends of signal correlate between both methods

GENERIC METHOD VS SPECIFIC METHOD: COMPOUND C

... Calculated Preliminary Cut-Point = 1.25* Mean NC

-/+: Specific Method Results

Good correlation between specific and generic methods:

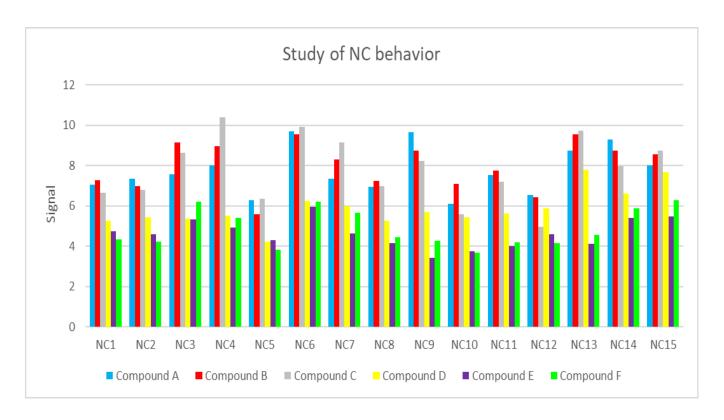
Identical ADA status and same trend for signal level across samples

→ Generic format performs well

PC PRODUCTION

- Selection of ADA+ samples from 3 monkey studies and cross-reactivity testing against 5 Biologics
- Selection of crossreacting ADA samples to constitute a high polyspecific positive control pool:

	Biologics tested for ADA cross-reaction						
	Compound A mAb IgG4						
Positive Samples from Compound A study		9 🗸	9 🗸	9 🗸	9 🗸	9 🗸	
3 Positive Samples from Compound B study	2 🗸		3 🗸	2 🗸	3 🗸	2 🗸	
4 Positive Samples from Compound C study	4 🗸	4 🗸		4 🗸	Not Tested	Not Tested	


PC PRODUCTION

CUT-POINT STRATEGY

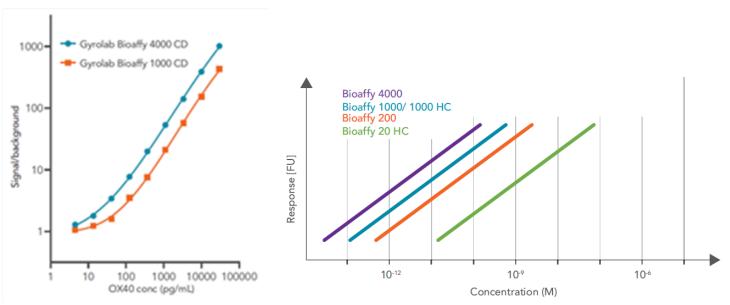
Naïve monkey samples (ADA negative) behavior against 6 different Biologics:

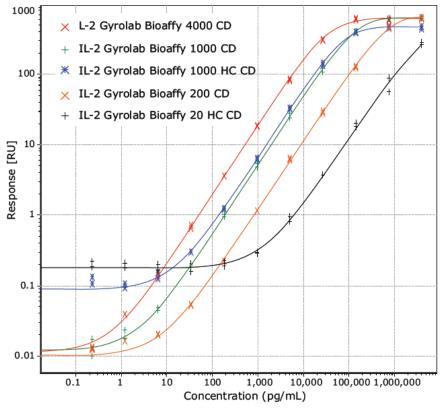
	Mean	SD	CV%
Compound A	7.75	1.16	15.0
Compound B	8.00	1.19	14.9
Compound C	7.83	1.62	20.8
Compound D	5.87	0.93	15.8
Compound E	4.63	0.70	15.0
Compound F	4.89	0.94	19.2
Compound A to F	6.49	1.80	27.7

CUT-POINT STRATEGY

Conclusion:

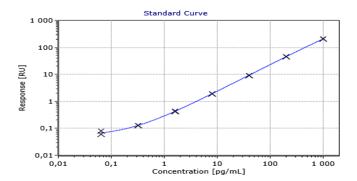
- 6 Tested Biologics → structural homology
- CV > 27% → Conservative approach applying a dynamic cut-point to reduce the risk of high variability against other Biologics
- Dynamic cut-point = mean negative control (NC) of 15 ADA negative samples + 3SD




BIOMARKER APPLICATIONS

EXTENDING THE ANALYTICAL RANGE

- Combined analytical range of 6 logs
- Sample volume determines assay sensitivity
- Seamless assay transfer between CDs



Note: The higher binding capacity of CDs using the high capacity (HC) streptavidin particle increases the upper limit of detection but may also increase background binding.

CYTOKINE ASSAYS WITH EXTENDED SENSITIVITY

Assay range	LOD (pg/mL)	LLOQ (pg/mL)	ULOQ (pg/mL)
On plate	~ 0.1	~ 0.3	~ 800
In neat serum	~ 0.2	~ 0.6	~ 1 600

anti-human/cyno IFN-γ mAb

rh IFN-γ

anti-human/cyno IFN-γ mAb

IFN	l- gam	ıma

100		Standard	Curve		
Response [RU]	*	Standard	X	*	*
0,001	0,1		10	100	1 000
0,01	5,1	Concent	ration [pg/mL]		1 000

Assay range	LOD (pg/mL)	LLOQ (pg/mL)	ULOQ (pg/mL)
On plate	~ 0.2	~ 0.3	~ 800
In neat serum	~ 0.4	~ 0.6	~ 1 600

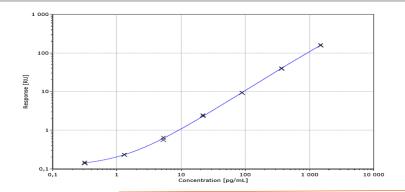
anti-human/cyno IL-4 mAb

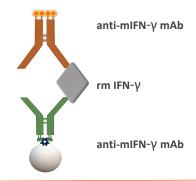
rh IL-4

anti-human/cyno IL-4 mAb

	1,000		Standard Cur	/e		
	100				×	
Response [RU]	10			×		
Respor	1		×			
	0.1	***************************************				
	0.1	1	10 Concentrati	100 on [pg/mL]	1,000	10,000

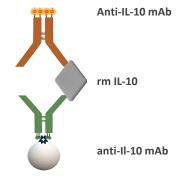
Assay range	LOD (pg/mL)	LLOQ (pg/mL)	ULOQ (pg/mL)
On plate	~ 0.6	~ 1	~ 1 200
In neat serum	~ 1.2	~ 2	~ 2 400


TNF-Alpha


anti-human/cyno TNF-α mAb

rh TNF-α

anti-human/cyno TNF-α mAb


Assay range	LOD (pg/mL)	LLOQ (pg/mL)	ULOQ (pg/mL)
On plate	~0.5	~1	~1 000
In neat matrix	~1	~2	~2 000

1 000 -		Standard Cur	ve		
100				×	
[] 10			×		
Response [RU]		×			
0,1	×				
0,01	10	100 Concentrati	1 000 ion [pg/mL]	10 000	100 000

Assay range	LOD (pg/mL)	LLOQ (pg/mL)	ULOQ (pg/mL)
On plate	~0.3	~4	~15 000
In neat matrix	~0.6	~8	~30 000

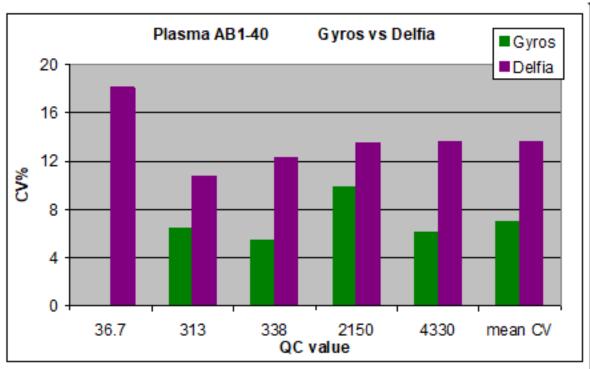
	100-				×
_					
Response [RU	10	 		×	
Res			×		
	1-	 ×			

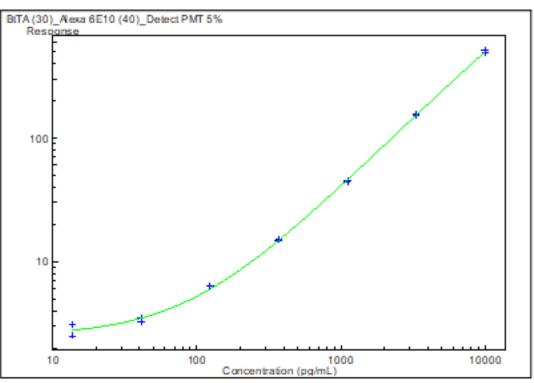
Assay range	LOD (pg/mL)	LLOQ (pg/mL)	ULOQ (pg/mL)
On plate	~0.5	~1	~4 000
In neat matrix	~1	~2	~8 000

anti-mTNF-α mAb
rm TNF-α
anti-mTNF-α mAb

TNF-Alpha

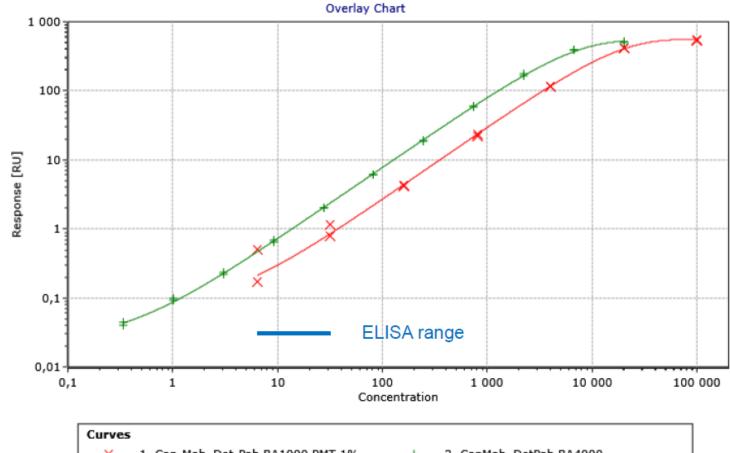
IL-10



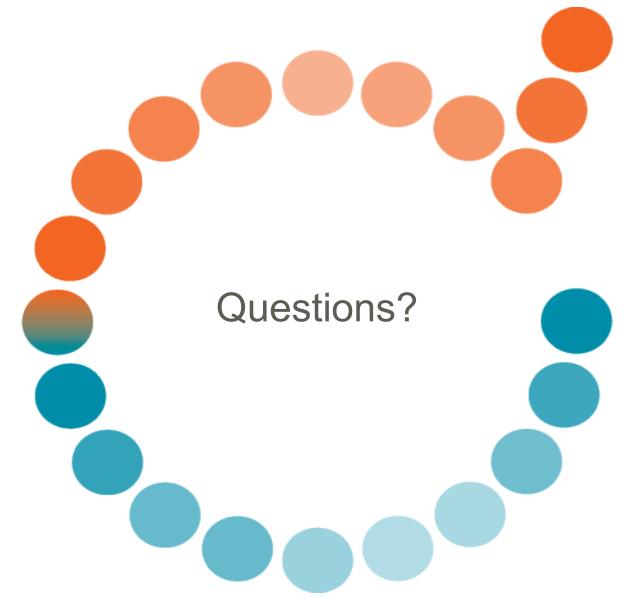

1 000 1

HISTORICAL ABETA AMYLOID 1-40

PREVIOUS ABETA AMYLOID 1-40 DATA


Courtesy of John Allinson, ICON PLC

BA 1000 vs BA 4000


1. Cap-Mab_Det-Pab BA1000 PMT 1% 2. CapMab_DetPab BA4000

BA4000 CD IMPROVED SENSITIVITY

SUMMARY

- Using the mixing CD with a Gyrolab ADA assay automates acid dissociation for significant time savings in immunogenicity assays
- High precision (<15%) for Covance pembrolizumab immunogenicity assay assays allowed singlet analysis
 - Drug tolerance 640 and >1000 μg/mL for Gyrolab (data not shown) and Covance assay, respectively appropriate for clinical use
 - Automation and use of singlet analysis increases productivity for bioanalytical laboratories with significant time and reagent savings
- Extended sensitivity for cytokine assays and high precision biomarker analysis is demonstrated by the Bioaffy 4000

Contact: John.chappell@gyrosproteintech.com

© Gyros Protein Technologies