

Immunogenicity cut point setting & outlier evaluation – part 2

V. Devanarayan, GlaxoSmithKline

European Bioanalysis Forum (EBF) Training Day Practical Aspects of Immunogenicity March 23-24, 2021, Virtual

Outlier evaluation and criteria

Hypothetical Lab Colleague

- Why was observation X removed as an outlier when it's in the middle of the data set? Why are similar values left in the analysis?
- These data are distributed normally and all observations are part of the normal variability of the population. So why did you remove so many outliers?

- Biological Outlier (*i.e.*, inter-subject) An individual <u>SUBJECT</u> whose measured values consistently deviate from the overall mean of <u>all</u> subjects.
 - Generally greater impact on resultant CP values
 - Often Biological outliers can display appreciable %INH (*i.e.*, preexisting ADA?)
- Analytical Outlier (*i.e.*, intra-subject) An <u>OBSERVED</u> result for a test sample that deviates from the mean response value for a specific subject and/or other ANOVA model factor(s).
 - May not be apparent based on visual inspection of observed responses
- See Devanarayan et al (2017) for details.

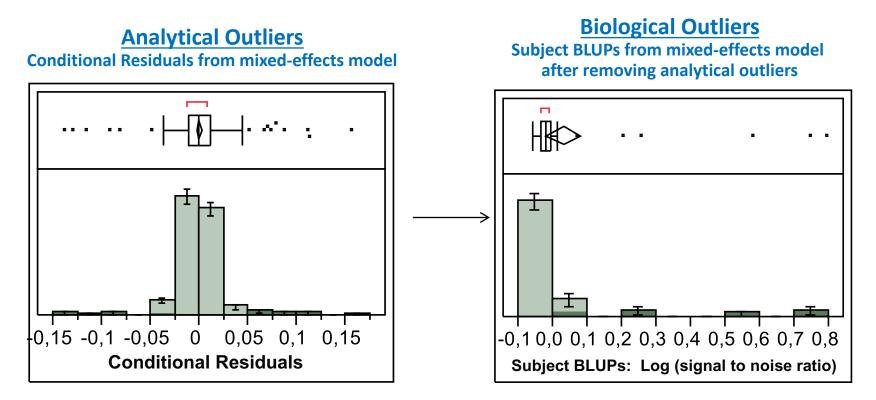
Statistical modeling approach for **<u>outlier</u>** evaluation

1. Fit a mixed-effects model on the normalized response (S/N).

- Random effects: Subjects, Run # nested within Analyst, and Plate ID.
- Fixed effects: Analyst, Plate testing order, interaction of Analyst and Plate testing order + gender, disease types, etc., as appropriate).
- 2. Obtain <u>conditional</u> residuals from this model.
 - Difference between the observed and predicted values that includes random subject effect *(reflects <u>only measurement error)</u>.*
 - Readily available from statistical programs such as JMP.
- 3. Use the "outlier box-plot" criteria on these *conditional residuals* to identify the outliers. \rightarrow <u>Analytical outliers</u>

<u>Outlier box-plot criteria:</u> Samples > Q3 + 1.5*(Q3-Q1) or < Q1 - 1.5*(Q3-Q1)Q3 = 75th percentile, Q1 = 25th percentile

Statistical modeling approach for <u>outlier</u> evaluation (contd.)


- 5. Refit the model without these analytical outliers, and then obtain Best Linear Unbiased Predictor (BLUP) for each subject.
- 6. Apply the "outlier box-plot" criteria on these subject BLUPs to identify the outlier subjects \rightarrow <u>Biological outliers</u>
- 7. Refit the model without all the analytical & biological outliers, for analyzing the assay characteristics (analyst effect, plate/run differences, variability differences, etc.)

Some borderline outliers may remain.

Normality test may fail due to long tails, but as long as distribution is reasonably symmetric (|skewness| < 1), parametric method can be used.</p>

Use of Median & MAD ("robust parametric") instead of Mean/SD in the SCP & CCP calculation will alleviate this issue.

Illustration of outlier evaluation with statistical modeling approach

Mixed effects model is fit on log(S/N). Conditional Residuals are evaluated to identify analytical outliers.

After excluding analytical outliers, model is refit to the remaining data to identify the biological outliers.

This method and a simpler alternative are described in Devanarayan et al (2017).

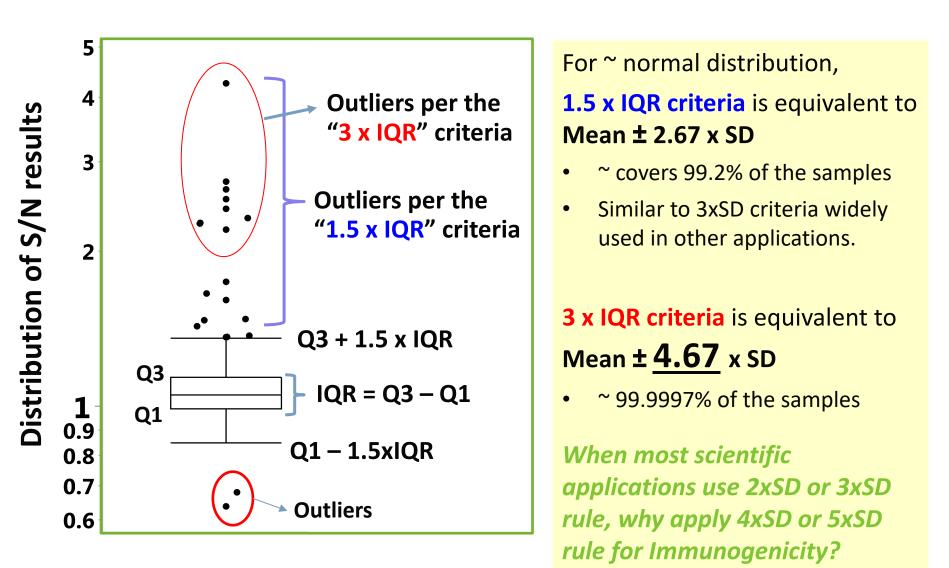
What criteria to use for Outliers?

Hypothetical Lab Colleague

- My screening CP factor is <u>too low.</u> You removed too many outliers!
- I am concerned that I will have too many positive samples in Tier 1.
- Can you re-examine how you removed the outliers?
- Can you **relax** the outlier criteria?
- How will leaving in more samples affect the SCP?

Tukey's outlier box-plots by default is based on the following criteria:

- High outliers: <u>> Q3 + 1.5 x IQR</u>
- Low outliers: < <u>Q1</u> **1.5** x IQR
 - $Q3 = 75^{th}$ percentile, $Q1 = 25^{th}$ percentile
 - *IQR = Inter quartile range = Q3 Q1* criteria:


Due to concerns about "low cut points", "too many outliers", etc., this criteria gets subjectively changed to **3xIQR**.

• Several talks at conferences some publications bemoan about "excessive" outlier removal.

Such subjectivity is not necessary if robust approach is used, i.e., Median/MAD instead of Mean/SD.

• Results from 1.5xIQR vs 3xIQR are usually similar if Median/MAD is used.

Interpretation of 1.5xIQR and 3xIQR outlier criteria

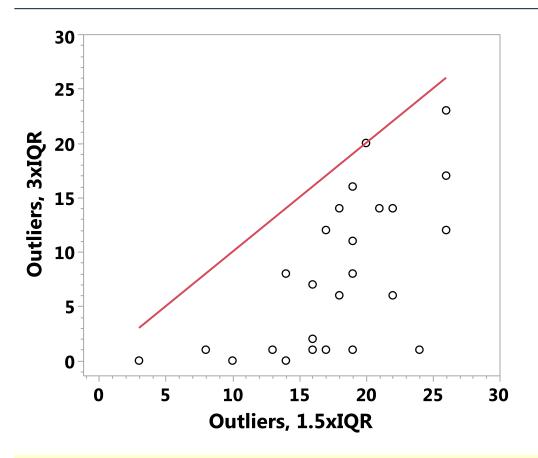
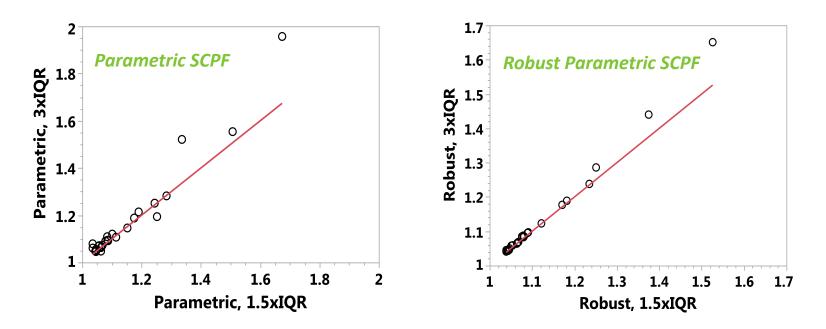


Illustration: Robustness to outliers

For the sake of illustration, we use 20 S/N values from SCP experiment.

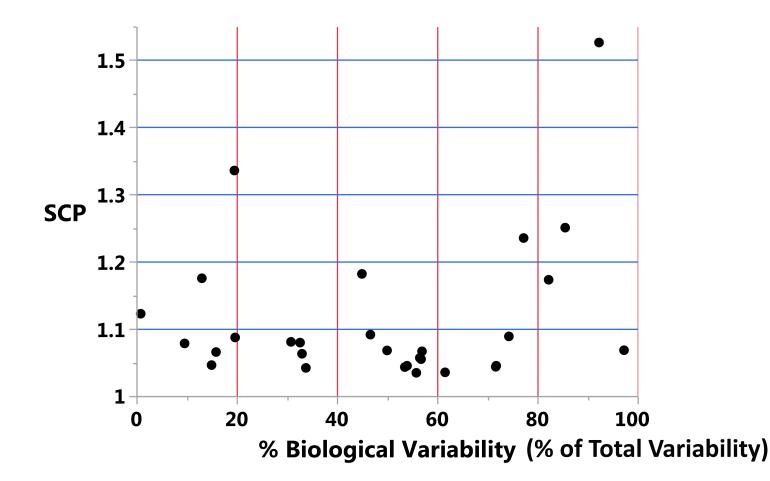

3xIQR criteria	S/N	log(S/N)	Absolute Deviation: log(S/N) - Median			0.497 = 0.514 – median(log(S/N))				
3.5 3 X			All Data	w/o 2	w/o 5 outliers			ledian deviati	-	ese
	3.267	0.514	0.497							
2.5 X	2.682	0.428	0.412				Parar	netric	Robus	st Par.
	1.574	0.197	0.180	0.193			50	CCD.		S C D
	1.325	0.122	0.106	0.118			SD	SCP	MAD*	SCP
2_	1.278	0.106	0.090	0.102						
Z 1.75	0.919	-0.037	0.053	0.041	0.035	All Data	0.152	2.094	0.046	1.225
S N	1.112	0.046	0.029	0.042	0.047					
1.5 O	1.086	0.036	0.019	0.031	0.037	w/o 2				
1.25 8	1.088	0.037	0.020	0.032	0.038	outliers (<u>3 x IQR</u>)	0.062	1.344	0.043	1.204
	0.999	0.000	0.017	0.005	0.001					
	1.022	0.009	0.007	0.005	0.011					
1-	1.057	0.024	0.007	0.020	0.025	w/o 5 outliers	0.028	1.120	0.034	1.133
	0.988	-0.005	0.022	0.010	0.004					
	0.997	-0.001	0.018	0.006	0.000	(1.5xIQR)				
	0.919	-0.037	0.053	0.041	0.035			ΝΑΛΓ	- 1 407	
1.5xIQR criteria	0.983	-0.007	0.024	0.012	0.006	MAD* = 1.4826 x MAD				
	1.088	0.036	0.020	0.032	0.038					
	0.952	-0.022	0.038	0.026	0.020	"Robust parametric" is more resistant to borderline outliers.				
	0.961	-0.017	0.034	0.022	0.016					
	0.977	-0.010	0.027	0.015	0.009					

1.5xIQR vs. 3xIQR criteria for 25 assays

- The number of outliers identified via 1.5xIQR and 3xIQR criteria are shown here.
- As expected, the 1.5xIQR identifies several more outliers than the 3.IQR criteria.
- Parametric (Mean/SD) method is skewed by outliers not caught using 3xIQR criteria.

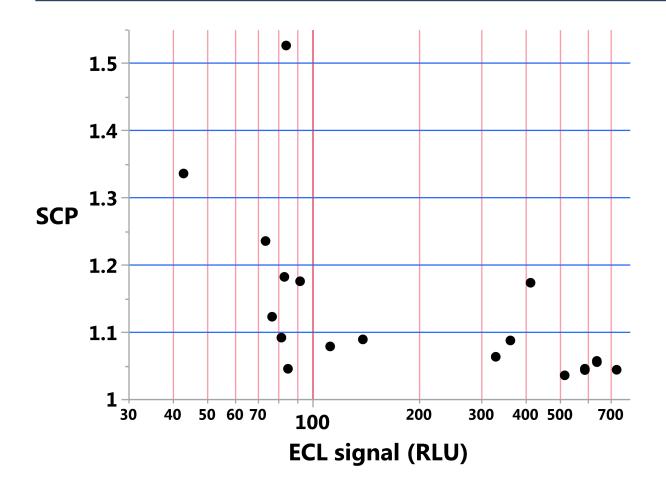
1.5xIQR vs. 3xIQR criteria; data from 25 assays

- If robust method is used, CP results between 1.5xIQR vs. 3xIQR are mostly similar.
- 3xIQR criteria is not the cure for "low" cut points!
- 1.5xIQR is ~ 2.7xSD, widely used in statistics literature, thus a good default.

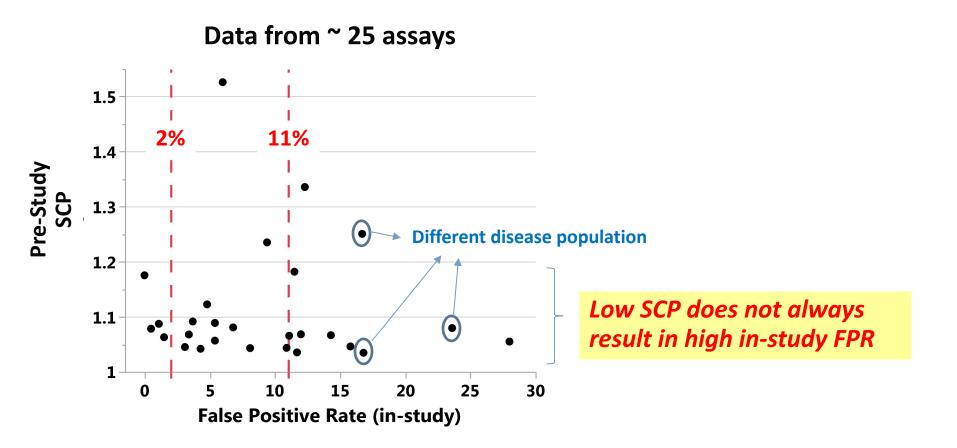

Low cut points, Low signal, and False Positive Rate

SCPF can be quite low, sometimes < 1.1 and often < 1.2 FAQs/concerns:

- Is this due to relatively low biological variability?
- Is this due to <u>low assay signal</u> (e.g., RLU) values?
- Will this lead to <u>high in-study FPR</u>?
 - Will it require *re-evaluation of in-study cut points*?
- Excluding <u>too many outliers</u>? Try different outlier criteria?
 - This was already addressed in previous section!


These questions will be addressed via retrospective evaluation of 25-30 assays; most of these assays have SCPF < 1.2

SCP factor vs. Biological variability


Assays with high biological variability can also have Low Cut Points!

SCP factor vs. Assay signal

- Assays with high RLUs can also have low SCP factors.
- Low RLU (<100) does not always imply low SCP.

Low cut points & in-study FPR

Thank you for your interest & attention!

Questions ?