

Plasma Renin Activity

A Non-Standard Approach for a Non-Standard Biomarker Assay

Fit-For-Purpose Validations

EMA 2012

EMEA/CHMP/EWP/192217/2009 Rev. 1 Corr. 2**
Committee for Medicinal Products for Human Use (CHMP)

Guideline on bioanalytical method validation

"Methods used for determining quantitative concentrations of biomarkers used in assessing pharmacodynamic endpoints are **out of the scope** of this guideline"

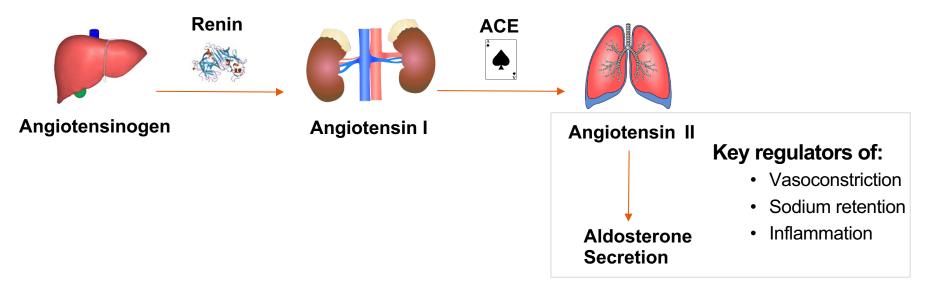
FDA 2018

Bioanalytical Method Validation Guidance for Industry "Biomarkers can be used for a wide variety of purposes during drug development; therefore, a fit-for-purpose (FFP) approach should be used when determining the appropriate extent of method validation"

Fit-For-Purpose Validations

Points to Consider Document:
Scientific and Regulatory Considerations for the
Analytical Validation of Assays Used in the
Qualification of Biomarkers in Biological Matrices

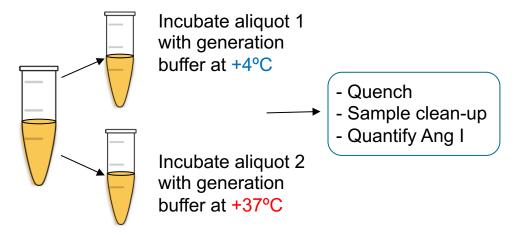
June 11, 2019


Biomarker Assay Collaborative Evidentiary Considerations
Writing Group, Critical Path Institute (C-Path)

"...only the analytical elements directly relevant to the biomarker of interest and its Context of Use (COU) in drug development should be considered"

The Renin-Angiotensin-Aldosterone System

The RAA system is the hormonal system which regulates blood volume, blood pressure and osmoregulation



Different enzymatic reactions in this system may be the target of drug mediated inhibition for the treatment of cardiovascular and kidney diseases

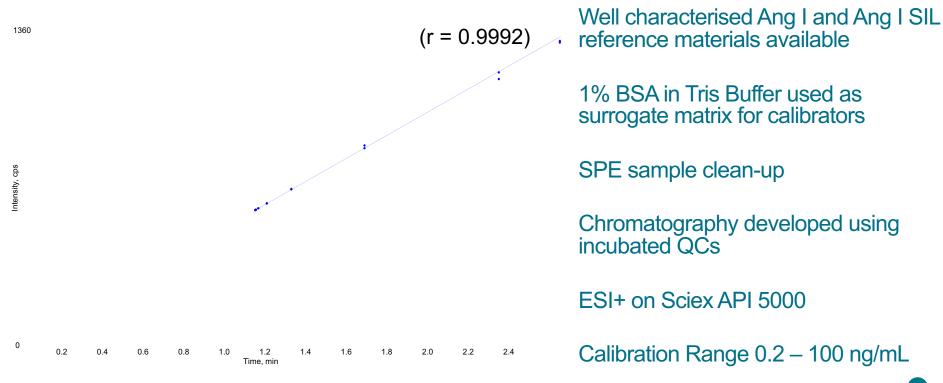
How do you measure activity?

LGC

3.6e4

Activity Sample Incubated at +37°C

Baseline Sample Incubated at +4°C


0.0 1.2 3.0 Time, min

 $\frac{AngI\ conc\ in\ +37^{\circ}C\ sample\ -\ AngI\ conc\ in\ +4^{\circ}C\ sample}{3\ (Incubation\ period)}\ =\ PRA\ ng/mL/hour$

5

Surrogate Analyte²: Angiotensin I

Reference Range & Dilutions

Reference intervals vary between labs and with age, gender, race, diet, posture

-0.167 - 40.0 ng/mL/hr

Dilution of PRA samples should be avoided

Undiluted Sample	Baseline	Activity
Ondiluted Sample	Sample	Sample
Ang I conc (ng/mL)	2.4	7.2
PRA (ng/mL/hr)	1.60	

Activity is disrupted

This has an impact on activity QCs

Reference Range & Dilutions

Reference intervals vary between labs and with age, gender, race, diet, posture

-0.167 - 40.0 ng/mL/hr

Dilution of PRA samples should be avoided

Undiluted Sample	Baseline	Activity
	Sample	Sample
Ang I conc (ng/mL)	2.4	7.2
PRA (ng/mL/hr)	1.60	

Not Corrected for	Baseline	Activity
Dilution Factor	Sample	Sample
Ang I conc (ng/mL)	0.5	0.8
PRA (ng/mL/hr)	0.10	

Activity is disrupted

This has an impact on activity QCs

Reference Range & Dilutions

Reference intervals vary between labs and with age, gender, race, diet, posture

-0.167 - 40.0 ng/mL/hr

Dilution of PRA samples should be avoided

Baseline	Activity
Sample	Sample
2.4	7.2
1.60	
	Sample 2.4

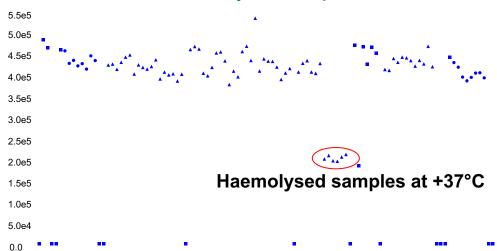
Not Corrected for	Baseline	Activity
Dilution Factor	Sample	Sample
Ang I conc (ng/mL)	0.5	0.8
PRA (ng/mL/hr)	0.10	

Corrected for	Baseline	Activity
Dilution Factor	Sample	Sample
Ang I conc (ng/mL)	2.6	4.1
PRA (ng/mL/hr)	0.51	

Activity is disrupted

This has an impact on activity QCs

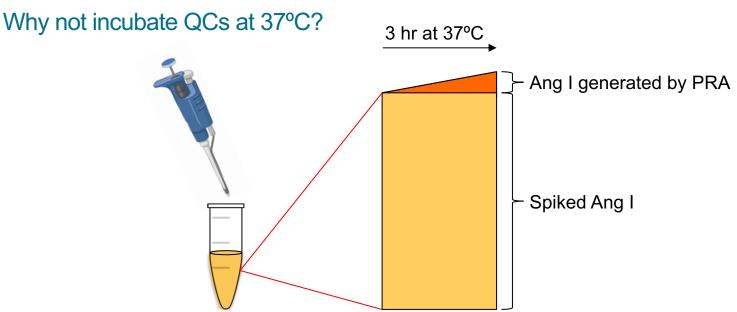
Matrix Effects


Parallelism – Angiotensin I Only

Use of 20% Intralipid for hyperlipidaemic plasma

 Cannot distinguish between abnormal PRA in an individual vs the potential impact of hyperlipidaemic matrix

Matrix effect in 3% haemolysed samples



Haemolysed Plasma	
PRA (ng/mL/Hr)	1.86
% Difference vs	20.6
Un-haemolysed Sample	39.6

Demonstrating Control: Angiotensin I

LGC

Surrogate LLOQ, spiked plasma QC Med and QC High Incubated on ice for 3 hours

• Intra- and Inter-batch accuracy was ≤ 7.1%, precision ≤ 4.8%

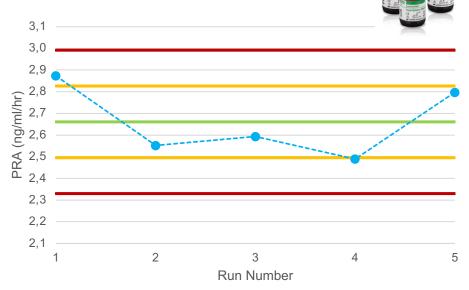
Is that a good control of renin activity?

The goal is reproducible PRA not Ang I...

Analytical Run	PRA ng/mL/hr
Run 1	1.27
Run 2	1.29
Run 3	1.21
Run 4	1.25
Run 5	1.33
Mean	1.27
SD	0.04
%CV	3.52

Assessed the precision of the incubation process in an endogenous pool across 5 analytical runs

- Intra-batch precision for Ang I in activity samples
 ≤6.5% CV
- Inter batch precision for PRA 3.5%


Accuracy?

Another Way to Demonstrate Control

Low, medium and high activity levels

BioRad QC	PRA
Level 2	ng/mL/hr
Run 1	2.87
Run 2	2.55
Run 3	2.59
Run 4	2.49
Run 5	2.80
Mean	2.63
SD	0.2
%CV	6.5

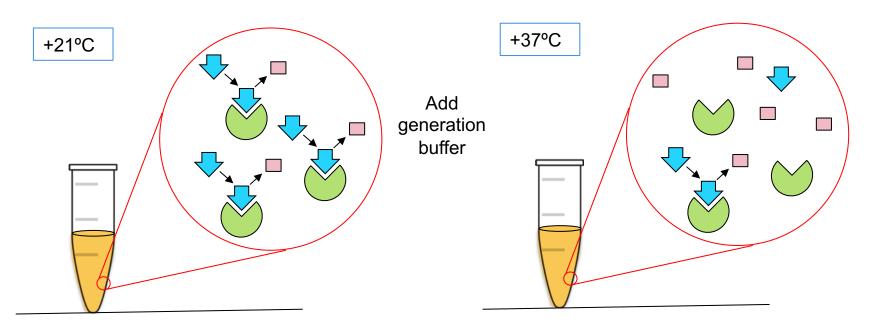
Acceptance criteria

- · Clinical acceptance criteria?
- 4-6-X?

Context of Use!

"Stability can only be attained by inactive matter"

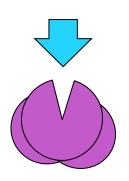
LGC



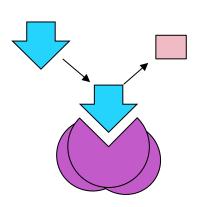
"Currently, pre-analytical errors account for up to 70% of all mistakes made in laboratory diagnostics"

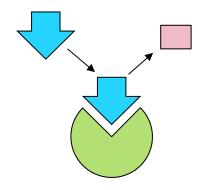
Stability and Pre-Analytical Factors

Enzyme activity at ambient temperature



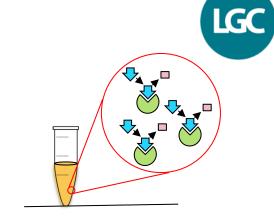
Substrate being used up before incubation


Stability and Pre-Analytical Factors


Cryo-activation of pro-renin

Pro-renin in frozen, ambient, and physiological temperatures

Pro-renin between -5°C and +4°C


Renin

May result in apparent PRA in sample which is higher than in vivo

Stability and Pre-Analytical Factors

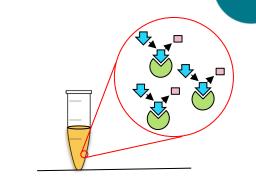
Did we see spontaneous generation of Ang I at RT?

- +67% Ang I in baseline sample after 24 hours
- -16% decrease in renin activity

Did we see cryo-activation of pro-renin?

- -0.8% change in renin activity after 24 hours at +4°C
- -3.4% change in renin activity after 4 freeze thaws

Pre-analytical factors addressed?


You Need to Factor in the Individual!

Did we see spontaneous generation of Ang I at RT?

- +67% Ang I in +4°C sample after 24 hours
- -16% decrease in renin activity
- 0.7% change in PRA for Individual 1
- -29% change in PRA for Individual 2
- -14% change in PRA for Individual 3

Did we see cryo-activation of pro-renin?

- -0.8% change in renin activity after 24 hours at +4°C
- -3.4% change in renin activity after 4 freeze thaws
- No change in renin activity after 24 hours at +4°C
- 12% change in PRA for Individual 1 after 4 F/T
- 13% change in PRA for Individual 2 after 4 F/T
- 4.0% change in PRA for Individual 3 after 4 F/T


...Unwelcome Friends

LGC

Validated up to 1 month stability for Ang I in surrogate matrix however....

Created a growth medium for something else

appeared at higher concentrations first!

Final Thoughts

Fit-for-purpose validation doesn't mean fewer assessments...

- 5x the stability work to ensure pre-analytical sample handling appropriate

Context of use

- What's the best way to demonstrate control?
- Is my acceptance criteria appropriate for the end use?

Do It Yourself

The literature is a guide not a gospel

Acknowledgements

LGC, Fordham, UK

Jodie Melling

Stephanie Keane

Geoffrey Wallace

Michael Wright

Provincial Health Services Authority, Vancouver, British Colombia Dr. Grace van der Gugten