APPROACHES TO IMPROVE DRUG TOLERANCE IN IMMUNOGENICITY ASSAYS

Cara Gunning, Study Director Immunobiology, Charles River Laboratories

Introduction

IMMUNOGENICITY ASSAYS

- Immunogenicity is defined as the ability of a foreign substance to produce an immune response in the body of a human or other animal
- All biotherapeutics have the potential to produce an immune response which can affect the safety and efficacy of a study
- Therefore the assessment of "anti-drug antibodies" (ADA) raised against a biotherapeutic is important to fully understand the entirety of the data collected
- ADA can affect the pharmacokinetics (PK), pharmacodynamics (PD) and/or the biological activity of the biotherapeutic, therefore it is important to ensure interpretation of the data is not compromised by any ADA present in the samples
- In addition to being present as a free antibody, ADA can also from antibody-drug complexes in the bioanalytical sample
- As a result of the potential to form these antibody-drug complexes the presence of high concentrations of drug in samples can prevent the detection of ADA
- For this reason one of the most important factors to consider when developing and validating immunogenicity assays is drug tolerance

WHAT IS DRUG TOLERANCE, AND WHY IS IT IMPORTANT

- Drug tolerance is defined as the measure of the maximum concentration of drug that can be present in a sample and not prevent a positive sample from being detected.
- Drug tolerance is performed to determine the level of biotherapeutic that can be present in a sample and still enable to the sample to be determined as positive for ADA
- Poor drug tolerance can lead to false-negative samples during the screening process of low level positive samples
- This can lead to a misinterpretation of the immunogenicity potential of the biotherapeutic
- Guidance provided by the EMA and FDA highlight the importance of drug tolerant immunogenicity assays for this reason, this is particularly important for non-clinical assays as dosing levels will be much higher

Case Study

Improving Drug Tolerance in a Pre-clinical Assay

ORIGINAL ASSAY SET UP

Case Study – Improving Drug Tolerance

Standard Acid dissociation approach on the MSD platform

Step 1 – Acid Dissociation

Incubate for 1 hour with 300 mM Acetic Acid

Step 2 – Immune Complex Formation and Sample Neutralisation

Samples incubated overnight with biotin and Ruthenium-labelled drug in neutralisation buffer

(200 mM Tris-HCl)

Step 3 – Block

Streptavidin plate blocked for 1 hour

Step 4 – Streptavidin:Biotin-Drug Complex Capture

Incubate for 2 hours

Step 5 - Addition of Read Buffer

Excitation of Ruthenium-labelled drug via electrochemical reaction of RU(bpy)3 to generate luminescence

The quantity of luminescence correlates with the level of ADA present in the sample

Figure property of Meso Scale Diagnostics LLC and used with permission

DRUG TOLERANCE RESULTS

Drug Spike	PC Concentration				
Concentration	HPC 200	00 ng/mL	LPC 100 ng/mL		
(µg/mL)	Detector	Response	Detector Response		
0	8426	8426 7661		101	
0.01	8032	7675	98	96	
0.1	7097	7097 6563		<u>94</u>	
1	2354	2363	76	75	
10	<u>118</u>	<u>117</u>	62	64	
100	57	59	61	60	
500	60	54	60	54	
1000	56	61	57	57	
1500	56	56	56	56	
2000	55	56	57	57	
PSCP		7	7		

- HPC could tolerate up to 10 μ g/mL drug
- LPC could tolerate up to 0.1 μ g/mL drug
- Predicted Cmax concentrations > 1000 μg/mL drug
- Drug tolerance levels not suitable in current assay format

Case Study – Improving Drug Tolerance

Options investigated

- 1. Assessing the minimum required dilution (MRD) of the assay impacts on the sensitivity
- 2. Acid Investigations Glycine HCl vs Acetic Acid
- 3. Acid incubation times

MRD DILUTION

Davis Calific	PC Concentration			
Drug Spike	HPC 50000 ng/mL	LPC 500 ng/mL		
Concentration (µg/mL)	Detector Response	Detector Response		
0	11724	127		
0.01	10555	116		
0.1	5012	92		
1	1589	<u>69</u>		
10	188	52		
25	84	49		
50	69	55		
75	<u>64</u>	54		
100	56	50		
500	49	49		
1000	48	50		
PSCP	63			

- 2% assay MRD of 1 in 50 utilised
- HPC could tolerate up to 75 μ g/mL drug
- LPC could tolerate up to $1 \mu g/mL drug$

ACID INVESTIGATION PART 1

Case Study – Improving Drug Tolerance

Acetic Acid (300 mM)

	PC Concentration			
Drug Spike	HPC 20000 ng/mL	LPC 100 ng/mL		
Concentration (µg/mL)	Detector Response	Detector Response		
0	9493	98		
0.01	9674	96		
0.1	9822	100		
1	6745	<u>87</u>		
10	1575	73		
25	455	72		
50	214	66		
75	149	69		
100	<u>119</u>	67		
500	68	69		
1000	68	64		
PSCP	79			

- Improvement on previous occasion
- HPC could tolerate up to 100 $\mu g/mL$ drug
- LPC could tolerate up to 1 $\mu g/mL$ drug

Davia Califica	PC Concentration			
Drug Spike	HPC 20000 ng/mL	LPC 100 ng/mL		
concentration (µg/mL)	Detector Response	Detector Response		
0	4323	68		
0.01	4342	63		
0.1	4357	67		
1	2943	65		
10	646	55		
25	208	54		
50	<u>109</u>	49		
75	84	51		
100	81	60		
500	53	53		
1000	55	58		
PSCP	69			

Glycine HCl (100 mM)

- HPC could tolerate up to 50 μ g/mL drug
- LPC did not give a result above the PSCP

ACID INVESTIGATION PART 2

	60 min incubation	45 min incubation	15 min incubation	5 min incubation
	PC Concentration		PC Concentration	
Drug Spike Concentration (ug/ml)	LPC 100 ng/mL	LPC 100 ng/mL	LPC 100 ng/mL	LPC 100 ng/mL
	Detector Response	Detector Response	Detector Response	Detector Response
0	93	92	95	87
0.01	94	93	90	84
0.1	100	91	90	82
1	<u>90</u>	<u>82</u>	81	<u>77</u>
10	71	71	<u>80</u>	63
25	63	63	71	57
50	69	70	72	65
75	68	69	69	58
100	65	68	73	58
500	64	66	67	58
1000	71	73	68	58
PSCP	76	75	77	66

- LPC could tolerate between 10 and 1 $\mu g/mL$ drug
- Various acid incubation times did not show a significant improvement of drug tolerance

Solid-Phase Extraction Acid Dissociation (SPEAD)

SPEAD – SOLID-PHASE EXTRACTION WITH ACID DISSOCIATION

- Solid-phase extraction with acid dissociation removes the interfering drug from the sample prior to performing a direct immunoassay to detect ADA
- The interaction between biotin and streptavidin is used to separate the ADA and antibody-drug complexes from the sample
- The acid dissociation step then removes the ADA from the biotin-streptavidin complex
- Acid dissociated samples are then neutralised and a direct detection step is used

SPEAD – IN PRACTICE

Case Study – Improving Drug Tolerance

Step 1 – Biotin-Drug Complex Formation

Overnight Incubation

Step 2 – Streptavidin:Biotin-Drug Complex Capture

Incubate for 1-2 hours

Step 3 – Acid Dissociation

Incubate for 5 min with 300 mM Acetic Acid

Step 4 – Sample Neutralisation

Incubate briefly

Transfer to MSD plate

Step 5 – Coat Neutralised samples on MSD plate

Incubate for 1 hour

Step 6 – Block

Incubate for 1 hour

Step 7 – Ruthenium-labelled drug addition

Incubate for 1 hour

Step 8 - Addition of Read Buffer

Excitation of Ruthenium-labelled drug via electrochemical reaction of RU(bpy)3 to generate luminescence The quantity of luminescence correlates with the level of ADA present in the sample

SPEAD DRUG TOLERANCE RESULTS

	PC Concentration			
Drug Spike Concentration (ug/mL)	HPC 20000 ng/mL	LPC 80.0 ng/mL		
	Detector Response	Detector Response		
0	15828	135		
0.0001	15331	139		
0.001	15944	130		
0.01	14286	132		
0.1	14322	123		
1	10732	109		
10	7307	95		
50	4730	91		
100	3341	<u>79</u>		
500	1226	70		
1000	811 61			
PSCP	78			

- HPC can tolerate in excess of 1000 μ g/mL drug
- LPC can tolerate up to 100 μ g/mL drug

Conclusion

ACID DISSOCIATION VS SPEAD

Drug Spike	PC Concentration				PC Concentration		
Concentration (µg/mL)	HPC 20000 ng/mL LPC 10		LPC 100	ng/mL Concentration (ug/u		HPC 20000 ng/mL	LPC 80.0 ng/mL
	Detector Response		Detector Response			Detector Response	Detector Response
0	8426	7661	97	101	0	15828	135
0.01	8032	7675	98	96	0.0001	15331	139
0.1	7097	6563	97	94	0.001	15944	130
1	2354	2363	76	75	0.01	14286	132
10	119	117	62	64	0.1	14322	123
10	<u>110</u>	<u>117</u>	02	04	1	10732	109
100	57	59	61	60	10	7307	95
500	60	54	60	54	50	4730	91
1000	56	61	57	57	100	3341	<u>79</u>
1500	56	56	56	56	500	1226	70
2000	55	56	57	57	1000	811	61
PSCP	77			PSCP	7	8	

- By employing SPEAD methodology we improved the drug tolerance of the assay at the LPC level from $0.1\mu g/mL$ to $100 \ \mu g/mL$
- This is a 1000-fold increase in drug tolerance at LPC level

Thank you for listening

CONTACT US

Cara Gunning, BA Study Director Department of Immunobiology Email: cara.gunning@crl.com

