Immuno-qPCR analysis and immunogenicity assessment of gene therapeutics and their targeted delivery molecules

EBF YSS

Fanni Suomi – Syrinx Bioanalytics, Finland

Contents

- ✓ Who am I?
- Syrinx Bioanalytics Oy
- < Background
- **≼** Aims
- < Methods
- < Results
- < Conclusions

Who am I?

(Can someone please tell me?)

Master's studies

Molecular Biotechnology and diagnostics,

University of Turku

B.Sc.

Biochemistry

Sept. 2018

Background

- Nucleic acid-based biotherapeutic products are gaining interest, but bioanalytical methods and guidelines are yet to be defined.
 - Preclinical and clinical safety evaluation methods need to adapt to the new needs of the industry.

Background

- Anti-sense oligonucleotides (ASOs) are primarily administrated by parental injection.
 - After administration ASOs are tranferred into tissues predominantly by endocytotic uptake.
- It has been suggested that peptide conjugates can enhance cell penetration and improve the targeting of antisense agents.
 - Pharmacokinetic analysis
- Short oligonucleotides are not likely to elicit immune responses. However, polypeptide conjugates may have immunogenic properties.
 - Immunogenicity assessment

Aims

Development of a pharmacokinetic analysis method for nucleic acid-based biopharmaceuticals and their carrier molecules.

< Immuno-qPCR

- Anti-drug antibody (ADA) assay for the assessment of immunogenicity.
 - ADA Bridging assay

MATERIALS AND METHODS

Test molecules

- Production of a fusion protein containing an antigen-binding fragment (Fab) and SpyCatcher in *E.Coli*.
- Sioconjugation of Fab-SpyCatcher with SpyTag-oligonucleotide

ADA bridging assay

qIPCR

qIPCR

12/01/2021

RESULTS

FANNI SUOMI

18

ADA bridging assay - Capture and tracer optimization

Signal-to-noise ratios with different Bio-Fab-ON/Eu-Fab-ON amounts.

Eu-Fab-ON (ng/reaction)	70	100	125	150	175	200	
50	4.3	5.2	5.8	6.6	7.2	7.1	Eu ³⁺
100	4.1	4.6	5.3	5.9	6.4	6.5	
150	3.8	4.3	4.9	5.3	5.9	6.1	
200	3.4	4	4.4	4.8	5.4	4.9	

ADA bridging assay - Sample incubation

720

ADA bridging assay - Tracer incubation

12/01/2021

ADA bridging assay

Polyclonal antibody was tested as positive control due to low signals with monoclonal antibody

12/01/2021

Cut point analysis

- Validated Excel spreadsheet based on Devanarayan V, Smith WC, Brunelle RL, Seger ME, Krug K, Bowsher RR. Recommendations for Systematic Statistical Computation of Immunogenicity Cut Points. AAPS J. 2017 Sep;19(5):14871498
 - ✓ 50 individual rat serum samples and 10 samples from a rat serum pool were measured.
 - Data was normally distributed.
 - Cut point 1.16 (mean + 1.645 x SD) at 5 % false positive rate.
 - ✓ Sensitivity 241 ng/mL (Cut point + 3 x SD).

qIPCR - bead and capture antibody optimization

Cq cycles of 31.3 µg/mL samples with different Dynabead/pAb ratios

	Bio-Anti-Human-IgG pAb						
Dynabeads	75 ng	100 ng	125 ng	150 ng	175 ng	200 ng	
2.5 μg	12.2	12.9	11.95	11.45	13.95	10.5	Contraction of the second seco
5 µg	11.8	11.7	12.5	11.6	11.5	11.1	
7.5 μg	12.1	11.25	10.8	10.2	11.9	11.9	
10 µg	11.0	11.6	12.0	11.4	11.0	11.4	

qIPCR – bead dissolving volume

%CV's of samples with the same amount of beads dissolved in 20 μL vs. 50 μL per reaction

	Concentration (ng/mL)					
Bead dissolving volume (µL)	1467	146.7	14.67	1.467		
50	<u>37.3</u>	1.3	<u>95.8</u>	<u>22.1</u>		
20	10.7	<u>27.7</u>	2.0	16.9		
<u>Underlined:</u> >20 %						

qIPCR – primer length

Cycles of quantification with different primer sets: Overhanging primers and Overlapping primers

	Standard concentration (ng/mL)						
	147 000	14 700	1 470	147	14.7	0	
Overhanging primers	10.6	13.8	16.2	20.9	24.6	33.1	
Overlapping primers	14.8	17.0	19.2	24.9	30.3	31.0	

qIPCR – final results

CONCLUSIONS

FANNI SUOMI

728

ADA bridging assay

- SpyCatcher fusion protein might block mAb from binding the Fab-Oligonucleotide molecule.
- Quasi-quantitative assay.
 - In practice anti-drug antibodies vary between individuals.
 - Results above cut point are considered positive.
- Assay meets the regulations for preclinical testing.
 - Sensitivity 241 ng/mL at 5 % false positive rate.

qIPCR

- Implementation of qIPCR assay was successful.
- qIPCR offers a super sensitive method for oligonucleotide-protein conjugate detection.
 - Less than 2 ng/mL of test molecule was detectable
- Problems with deviation.
 - Immunoassay phase-derived.
 - Beads may increase deviation.
- Changing the magnetic beads to a different solid phase might solve the deviation problem.

Future aspects

- Autumn: oligonucleotide extraction method development.
- Future: bioanalysis of oligonucleotide-based biotherapeutic products.

Acknowledgements

- Supervisor Nina Sirkka, Syrinx Bioanalytics
- Scientific Director Timo Piironen, Syrinx Bioanalytics
- Pasi Virta and Antti Äärelä, Department of Chemistry, University of Turku
- Tuomas Huovinen and Anastasiia Kushnarova-Vakal, Biotech. unit, Department of Biochemistry, University of Turku

For futher questions, don't hesitate to contact me (e.g. via LinkedIn)!

THANK YOU!

