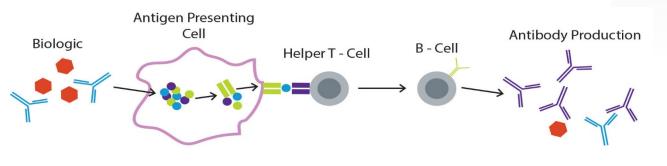
Biosimilar ADA assessments using the Gyrolab platform

Sam Willcox Immunochemistry Department, Harrogate, U.K.

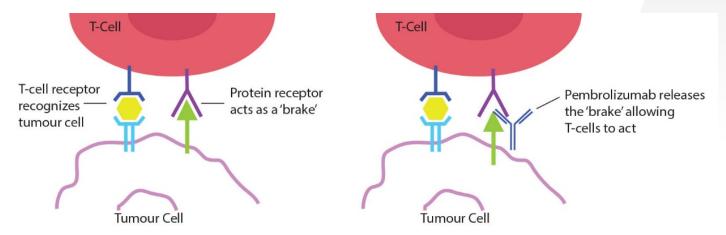
September 2020

Copyright © 2020 Covance. All Rights Reserved.


1	Anti-drug antibodies (ADA) and testing strategy
2	Drug Tolerance/Interference and Methods to negate this.
3	ADA testing on the Gyrolab
4	Development of a Pembrolizumab ADA assay & Challenges Encountered
5	Summary and Conclusions

What are anti-drug antibodies (ADA)?

- Large molecule biotherapeutics have complex structures
 - Potential to be recognized as 'foreign' by the human / animal immune system, leading to production of antibodies against the biotherapeutic, known as anti-drug antibodies (ADA)
- Clinical effects of ADA are highly variable, ranging from benign to severe adverse effects

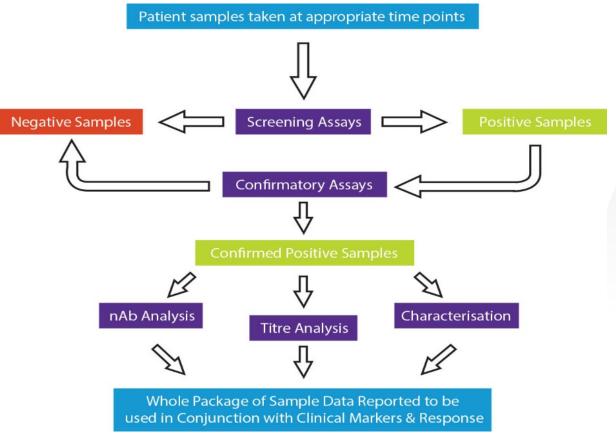

Generation of ADAs

Pembrolizumab (Keytruda[®])

- Model mAb: Monoclonal IgG⁴ Antibody
- Target: Programmed Cell Death 1 Transmembrane Protein (PD-1)
- Immune Checkpoint Inhibitor
- Top 5 Bestselling Biotheraputics in 2019 Frequently used in a number of combination therapies

Schematic showing Pembrolizumab interaction with PD-1 on a tumour cell. This releases the immune system 'brake' to allow for T-Cell effector function.

COV


ADA testing

Important parameters to assess in development and validation of ADA methods:

- Sensitivity
 - Regulatory expectation that assay achieves a sensitivity of 100 ng/mL relative to a positive control reference material
- Drug tolerance
 - Need to ensure we can detect the ADA in the presence of biotherapeutic levels that will be present in study samples
- Selectivity
 - Need to robustly detect ADA across different individuals
- Stability
 - Want to ensure that routine sample handling doesn't impact the result in the assay
 - But stability of positive control may not represent that of samples

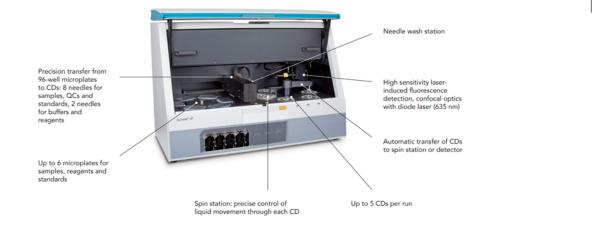
ADA Strategy – Qualitative not Quantitative

Clinical Testing for ADA

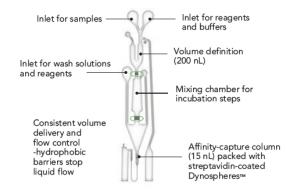
- Historically ELISA industry standard for ADA Detection.
 - Pros: Easy, Cheap, Minimal Equipment, Non-proprietary
 - Cons: Drug Tolerance, Sensitivity New FDA guidelines

More recently the Meso Scale Discovery[™] (MSD) platform has become widely used

- Pros: Sensitivity, Drug tolerance
- Cons: Cost, Proprietary, Low Background Signals = Low Cut-point Factors.


Gyros Previous ADA Solutions: Worked - But Not Competitive.

- Offline Sample Processing
- 48 Channel Mixing CD



Testing ADA on the Gyrolab

- Semi-Automated Immunoassay Platform on a Nanolitre Scale
- New Mixing CD 96 Increases Sample Throughput
- Aim of the Project to Evaluate new CD Type.

Gyrolab Mixing CD 96

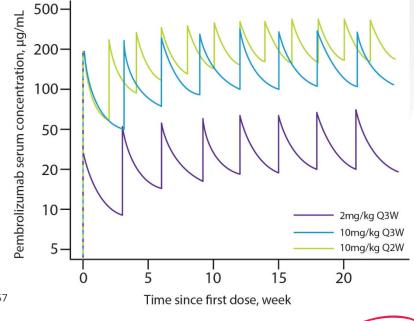
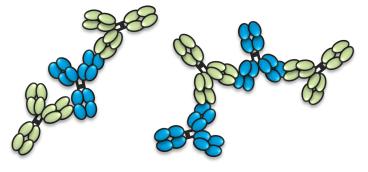
Automated acid dissociation takes place in the mixing chambers of the Gyrolab Mixing CD

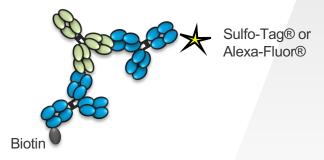
Image courtesy of GyrosProtein Technologies

Drug Tolerance & Acid Dissociation

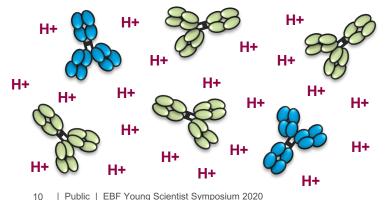
- Antibody therapeutics are dosed at high concentrations and have a long half life.
- Often multiple dosing so ADA sampling performed prior to drug clearance

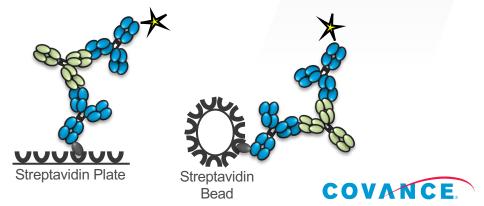
- High drug tolerance is a challenge due to low sensitivity requirements usually a tradeoff between the two.
- Acid treatment of samples to Drug-ADA complexes most commonly used technique to improve DT.
- Manually performed this contains multiple assay steps in quick succession
- Mixing CD automates this process.


Image Source: Ahamadi et al. CPT: Pharmacometrics & Systems Pharmacology (2017) 6(1): 49-57

Overcoming Drug Interference With Acid Dissociation


1. Sample containing **Pembrolizumab** and **ADA**


3. Neutralize, then add Labelled-Pembrolizumab to form ADA bridge-complex

2. Acid treatment to dissociate complexes

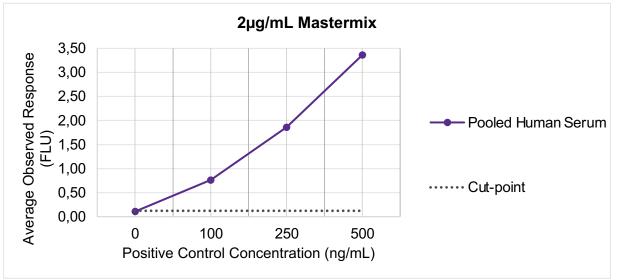
4. Capture **ADA bridge-complex** on solid state, then detect

Advanced Techniques for Overcoming Drug Interference

- ► ACE Affinity Capture Elution
- SPEAD Solid Phase Extraction with Acid dissociation
- PandA¹– Precipitation and Acid dissociation

All Involve some acid dissociation but with further 'clean up' steps

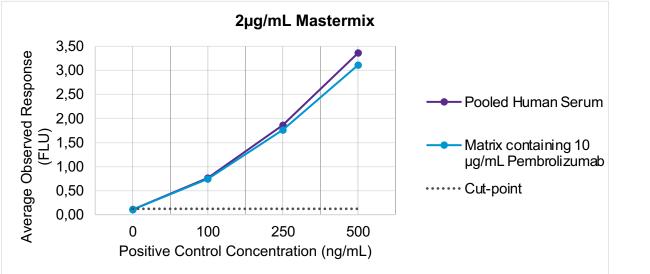
- BEHD² Bead Extraction and Heat Dissociation
- HISDA³ High Ionic Strength Dissociation
 Dissociation but with alternative approaches


¹Jad Zoghbi et al, A breakthrough novel method to resolve the drug and target interference problem in immunogenicity assays J Immunol Methods 2015 Nov;426:62-9. ²Weifeng Xu et al, Bead-extraction and heat-dissociation (BEHD): A novel way to overcome drug and matrix interference in immunogenicity testing, J Immunol Methods 2018; 462:34–41

³Gregor Jordan et al. High ionic strength dissociation assay (HISDA) for high drug tolerant immunogenicity testing, Bioanalysis Journal June 2020

Assay Optimization and Challenges Observed

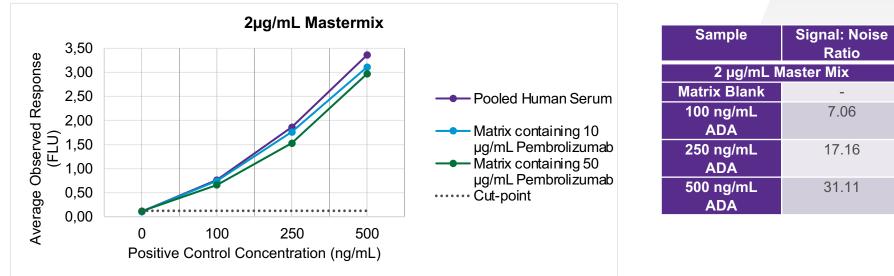
- Followed Suggested Assay Protocol –
- Acid Buffer pH 2.6 Glycine HCI Neutralization Buffer– 2M Tris-HCI pH8.0
- Master-Mix Concentrations of 2, 8 & 32µg/mL.
- MRD 1 in 5



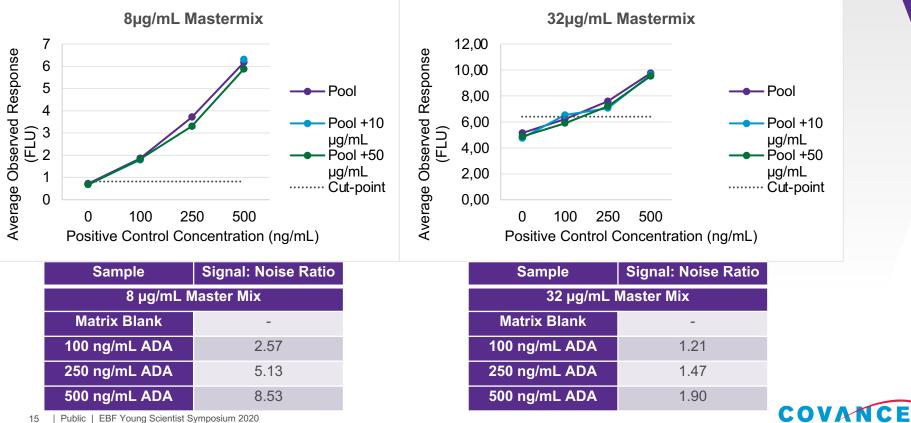
Sample	Signal: Noise Ratio		
2 µg/mL Master Mix			
Matrix Blank	-		
100 ng/mL	7.06		
ADA			
250 ng/mL	17.16		
ADA			
500 ng/mL	31.11		
ADA			

Assay Optimization and Challenges Observed

- Followed Suggested Assay Protocol –
- Acid Buffer pH 2.6 Glycine HCI Neutralization Buffer– 2M Tris-HCI pH8.0
- Master-Mix Concentrations of 2, 8 & 32µg/mL.
- ▶ MRD 1 in 5

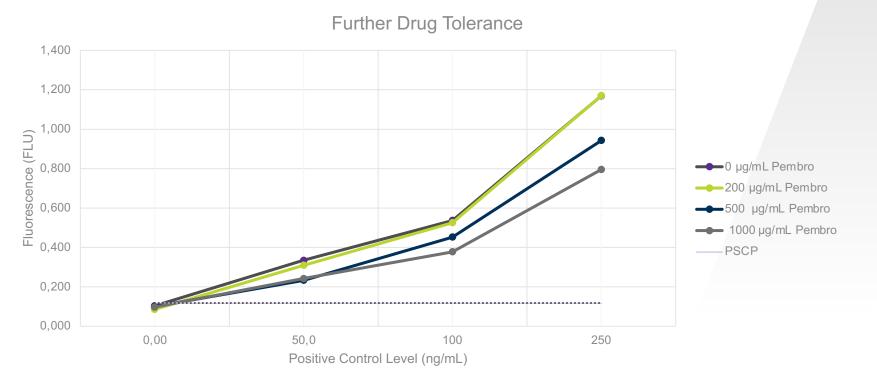


Sample	Signal: Noise Ratio		
2 µg/mL Master Mix			
Matrix Blank	-		
100 ng/mL ADA	7.06		
250 ng/mL ADA	17.16		
500 ng/mL ADA	31.11		



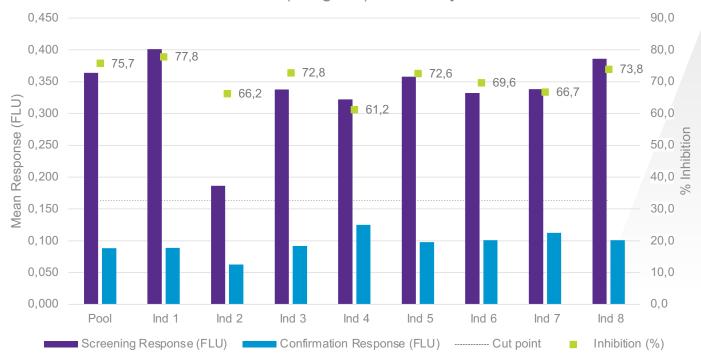
Assay Optimization and Challenges Observed

- Followed Suggested Assay Protocol –
- Acid Buffer pH 2.6 Glycine HCI Neutralization Buffer– 2M Tris-HCI pH8.0
- Master-Mix Concentrations of 2, 8 & 32µg/mL.
- MRD 1 in 5



Assay Optimization

15



COVANCE.

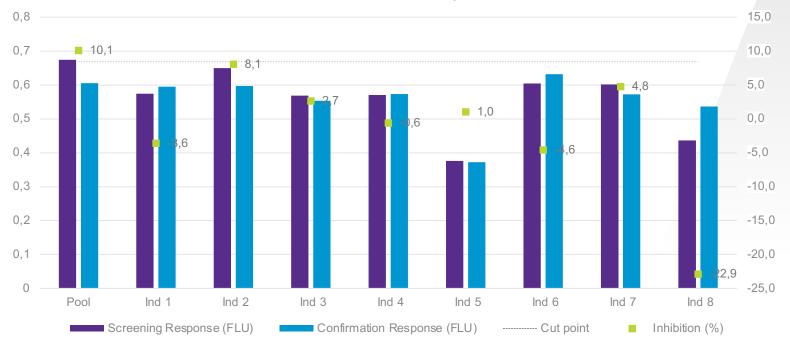
Selectivity

LPC (50ng/mL) Selectivity

Blank Confirmation Issues

Excess drug (200µg/mL) added to Mastermix Solution

Blank Individual Selectivity


77.5

Fixed Confirmation Cut-Point (% Inhibition)

Solution- Changing Addition of Excess Drug

Method Altered: Excess Drug added to Sample Dilution Buffer

Blank Selectivity

Gyrolab Summary & Conclusions

Proof of Concept Successful:

Sensitivity & Drug tolerance exceeds regulatory expectations

Challenges Remaining:

Are background variation issues inherently the same as other platforms? – Further assessment of cut-points using full balanced design required for full assessment

Gyrolab			
Screening Cut-Point Factor	1.14		
MSD			
Screening Cut-Point Factor	1.09		

Conclusion:

Results show that the Gyrolab platform is a viable alternative for regulated ADA analysis with added benefits of semi-automation which can improve sample throughput & reduce analytical errors.

Acknowledgements

Hannah Craig Covance/University of Leeds MSc Biopharmaceutical Development Sarah Malpas Robert Nelson Johannes Stanta Covance Statistics Group John Chappell Gyros Protein Technologies

Covance is a business segment of LabCorp, a leading global life sciences company, which provides contract research services to the drug, medical device and diagnostics, crop protection and chemical industries. COVANCE is a registered trademark and the marketing name for Covance Inc. and its subsidiaries around the world.

www.covance.com