Comparison of Generic Methods for the Quantification of Pembrolizumab Using Gyrolab[™] and LC-MS/MS

Robert Stewart 13th European Bioanalysis Forum Symposium 20th November 2020

Project Aims

1 Investigate generic PK methods for quantification of mAbs in preclinical species

2 Use Pembrolizumab to compare generic
2 LBA on Gyrolab[™] with signature peptide quantification by LC-MS

Quantify the impact of Anti-Drug
Antibodies on Gyrolab[™] and LC-MS

Why do we need a generic assay?

- Detects the constant region of the humanized mAb – allowing quantification of many different therapeutics with one generic assay
- Able to distinguish human antibodies dosed into a pre-clinical species
- Fit for purpose accuracy and precision – Very little
 MD/optimization – suited to a discovery group

Pembrolizumab – Mode of Operation

- Humanized IgG4 monoclonal antibody
- Targets programmed cell death receptor (PD-1)
 - Binding to PD-1 on T cells to prevent binding to PDL-1 on tumor cell triggering programmed cell death
 - Therefore re-estabilishing T cell mediated anti-tumor response
- We want to prepare for next wave of combination pharmaceuticals used in conjunction with this therapy

Generic LC-MS Method Based on Literature Method

© AB Sciex Pte. Ltd. - used with permission

Method: LC-MS/MS

- ► Tryptic digestion and SPE, followed by LC with MS detection, SILu™Mab K1 as internal standard (stable label)
- Calibration standards (Cals) and quality controls (QCs) prepared in nonhuman primate (NHP) serum
- C18 column coupled with AB Sciex 6500+
- 15 µL sample volume to accommodate micro sampling

Method Development

- 1. Digestion and MS optimization of Pembrolizumab
- 2. Accuracy and precision
- 3. Immunogenicity interference test

LC-MS/MS: Infusion of Pembrolizumab

Peptide Name	Sequence	IgG Subclass
Peptide 1	VVSVLTVLHQDWL NGK	lgG1, lgG4, lgG3
Peptide 2	GFYPSDIAVEWES NGQPENNYK	lgG1, lgG4
Peptide 3	DSTYSLSSTLTLSK	All
Peptide 4	VDNALQSGNSQE SVTEQDSK	All

Figure: Representative chromatograms demonstrating peak intensities (cps) of 5 peptide transitions with highest peak intensities; (-) $603.7 \rightarrow 806.0$ (Peptide 1); (-) $603.7 \rightarrow 712.8$ (Peptide 1); (-) $849 \rightarrow 764.4$ (Peptide 2); (-) $752.0 \rightarrow 836.5$ (Peptide 3) and (-) $752.0 \rightarrow 1036.6$ (Peptide 3). In (A) peak intensities of transitions in the highest pembrolizumab calibration standard concentration of 500,000 ng/mL. In (B) Representative LLOQ chromatogram of Peptide 1 transition $603.7 \rightarrow 806.0$ following second LC-MS/MS A&P to determine LLOQ. Concentration of pembrolizumab was 500 ng/mL. S-T-N was >5: 1.

LC-MS/MS: Accuracy and Precision (A&P) Run

What was done?

- Analysed 1 A&P Run 500 ng/mL to 500,000 ng/mL analysed in singlicate
- Six QC levels, each with 6 replicates: LLOQ 500 ng/mL and $ULOQ 500 \mu \text{g/mL}$

intra-Assay Treesion and Accuracy of Quarty Control Sample Data										
	LLOQ Q	С	LQC		LMQC		MQC		HQC	
	500 ng/m	L	2000 ng/m	L	20,000 ng/	mL	200,000 ng/i	mL	400000 ng	/mL
Replicate	Concentration (ng/mL)	%Bias								
1	545	9.0	1590	-20.5	17600	-12.0	185000	-7.5	344000	-14.0
2	515	3.0	1750	-12.5	19400	-3.0	-	-	361000	-9.8
3	488	-2.4	2030	1.5	19200	-4.0	185000	-7.5	373000	-6.8
4	508	1.6	1690	-15.5	19800	-1.0	189000	-5.5	368000	-8.0
5	511	2.2	2050	2.5	20100	0.5	199000	-0.5	422000	5.5
6	613	22.6	2180	9.0	22300	11.5	220000	10.0	427000	6.8
Precision (%)		8.4		12.6		7.8		7.6		8.9
Bias (%)		6.0		-6.0		-1.5		-2.0		-4.3

Generic Gyrolab™ method using commercial kit by Gyros™

© Gyros – Picture used with permission

Method: Gyrolab[™]

- ► Used the Gyrolab[™] generic PK kit
- Cals and QCs prepared in nonhuman primate (NHP) serum
- ► 10 µL sample volume used

Method Development

- 1. Reagent and assay range test
- 2. Accuracy and precision
- 3. Immunogenicity interference test

© Gyros – Picture used with permission

Gyrolab[™] PK Kit optimisation

Figure: Calibration curves generated following GyrolabTM analysis of calibration standards ranging from pembrolizumab concentrations of 10 ng/mL to 20,000 ng/mL. Standards were diluted in two different sample dilution buffers: Reagent E (-x-) and Reagent F (- \mathbf{v} -). The calibration standard at a concentration of 5 ng/mL was masked for both sample dilution buffers following failure of accuracy acceptance criteria (%bias was > 20%).

Figure: (A) Calculated intra-assay accuracies (%Bias) of QC concentrations in Gyrolab A&P investigation. Data is presented as mean % bias ± upper and lower % bias range of individual replicates. Intra-assay accuracy acceptance criteria for each QC concentration was a % bias less than ± 20% (····) and less than ± 25% at the LLOQ (20 ng/mL) and ULOQ (15,000 ng/mL) (····). In (B) the magnified view of intra-assay accuracy is shown. At each concentration n=6.

Gyrolab[™]: Accuracy and Precision (A&P) Run

What was done?

- Analysed 3 A&P Runs 20 ng/mL to 15,000 ng/mL analysed in singlicate
- ► 6 QC levels, with 6 replicates each: LLOQ QC (20 ng/mL)

Inter-Assay Precision and Accuracy of Quality Control Sample Data						
	LLOQ	LQC	LMQC	MQC	HQC	ULOQ
	20 ng/mL	60 ng/mL	660 ng/mL	7500 ng/mL	10000 ng/mL	15,000 ng/mL
Mean (ng/mL)	24.51	58.41	757.64	7845.90	14727.49	14962.97
Precision (%)	17.57	18.74	9.32	14.04	24.24	20.00
Bias (%)	22.53	-2.65	14.79	4.61	5.10	-0.24

How Do Anti-Drug Antibodies Affect the Bioanalysis?

COVANCE

Immunogenicity Interference Test

Influence of anti-pembrolizumab antibodies on assay performance Adding three different concentrations LQC & HQC samples

- ► Gyrolab[™]: ADA = big effect
- ► LC-MS = no interference

	Gyrolab		LC-MS/MS		
QC level (ng/mL)	LQC (450 ng/mL)	HQC (8,000 ng/mL)	LQC (2,000 ng/mL)	HQC (40,000 ng/mL)	
pAb concentration (ng/mL)	%Bias				
0	12.5	3.0	-6.0	-4.3	
FDA REQUIRED SENSITIVITY 100	-13.0	-14.9	16.9	1.6	
1,000	-54.3	11.1	13.7	-3.4	
10,000	-98.1	-27.8	-17.1	-1.6	

Effect of ADA's on GYROLAB™

Figure 10: Effect of increasing concentrations of anti-pembrolizumab pAb on GyrolabTM analysis. In (**A**) observed concentration of pembrolizumab in LQC samples following addition of 0 ng/mL, 100 ng/mL, 1000 ng/mL and 10,000 ng/mL anti-pembrolizumab pAb. Data is presented as mean \pm standard deviation. At 0 ng/mL n=6, at 100 ng/mL and 1000 ng/mL n = 5 and at 10,000 ng/mL n=3 due to two replicates in this group being below the limit of detection on the GyrolabTM. In (**B**) observed concentration of pembrolizumab pAb. Data is presented as mean \pm standard deviation. At 0 ng/mL, 1000 ng/mL and 10,000 ng/mL anti-pembrolizumab pAb. Data is presented as mean \pm standard deviation. At 0 ng/mL and 10,000 ng/mL anti-pembrolizumab pAb. Data is presented as mean \pm standard deviation. At 0 ng/mL n=6, at 100 ng/mL, 1000 ng/mL and 10,000 ng/mL and 10,000 ng/mL n = 5. * = Significant difference (p < 0.05) between groups following one-way ANAVO and Tukey's post hoc test.

Effect of ADA's on LC-MS/MS

Figure 18: Effect of increasing concentrations of anti-pembrolizumab pAb on LC-MS/MS analysis. In (**A**) observed concentration of pembrolizumab in LQC samples following addition of 0 ng/mL, 100 ng/mL, 1000 ng/mL and 10,000 ng/mL anti-pembrolizumab pAb. Data is presented as mean \pm standard deviation. At each anti-pembrolizumab pAb concentration n=6. In (**B**) observed concentration of pembrolizumab in HQC samples following addition of 0 ng/mL, 100 ng/mL, 100 ng/mL, 1000 ng/mL anti-pembrolizumab pAb. Data is presented as mean \pm standard deviation. At each anti-pembrolizumab addition of 0 ng/mL, 100 ng/mL, 1000 ng/mL and 10,000 ng/mL anti-pembrolizumab pAb. Data is presented as mean \pm standard deviation. At each anti-pembrolizumab pAb concentration n=6. * = Significant difference (p < 0.05) between groups following one-way ANAVO and Tukey's post hoc test.

Summary of Methods

Parameter	LC-MS/MS	Gyrolab™
Assay Sensitivity (ng/mL)	500	20
Assay Range (ng/mL)	500 – 500,000 (1000 fold)	20 – 15,000 (750 fold)
Accuracy and Precision	% CV < 13 % Bias < 6	% CV < 25 % Bias < 25
Sample Volume (µL)	15	10
Assay Time (h)	7.5	1.5
Influence of ADA	Low/None	High
Application	Toxicokinetics	Pharmacokinetics

Any Questions?

Project completed by Rebecca Taylor – University of Leeds Biopharmaceutical masters

Thanks to the following for their contributions to the project -

- Barry Hawthorne
- Gregory Bogle
- Emma Tipping
- Sam Willcox
- Sarah Malpas
- Johannes Stanta

Covance is a business segment of LabCorp, a leading global life sciences company, which provides contract research services to the drug, medical device and diagnostics, crop protection and chemical industries. COVANCE is a registered trademark and the marketing name for Covance Inc. and its subsidiaries around the world.

www.covance.com