

Development of IP-LC-TQMS methodology as biomarker readout to quantify Tau phosphorylation around T217 in CSF clinical study samples from Alzheimer diseased patients

Sebastiaan Bijttebier, Clara Theunis, Farid Jahouh, Dina Rodrigues Martins, Marc Verhemeldonck, Karolien Grauwen, Lieve Dillen, Marc Mercken

13th EBF Open Symposium - November 2020

Alzheimer

Lack of knowledge of the mechanisms involved in disease pathogenesis

Aggregation of $amyloid \ \beta$ and $phosphorylated \ Tau$ in brain

Linked to neurodegeneration

> **Project aim**: develop Ab specific for pTau to prevent aggregation

Hanger et al., 2009, Trends in Molecular Medicine 15, 112-119 Lee et al., 2019, Future Medicinal Chemistry 11, 1845-1848

janssen 🔽

PHARMACEUTICAL COMPANIES

Anti-pTau Ab

Humanized Ab X dosed in clinic

janssen

PHARMACEUTICAL COMPANIES OF Johnson-Johnson

4

IP-LC-MS/MS approach

- Expected pTau concentration 1-10pM

LC-MSMS systems

AB Sciex 6500

Advantages:

- Most sensitive system in development BA
- High throughput
- Compatible to a wide pH range

Disadvantages:

- Works at classical UHPLC flow rates

Waters TQS multi-D LC system

Sensitivity

Advantages:

- High samples loading capacity
- Elution at a low flow rate (best sensitivity of the system)

Disadvantages:

- Not possible to work at high pH
- Complexity of the system (novelty)
- Longer run time

Tryptic fragments of extended peptides

relative abundance relative to the most abundant ion per peptide:

	-	p217	P214/p217	p212/p217	p212/p214	P212/p214/p217	p210/p214/p217
TPSLPTPPTR	100	100	100	2.5	2.3	-	75*
SRTPSLPTPPTR	-	-	53	100	100	100	100
TPSLPTPPTREPK	12	18	32	-	-	-	26*
SRTPSLPTPPTREPK	-	-	19	50	15	64	52

*loss of phospho-moiety

Major influence of phosphorylation on trypsinization – site dependent

PHARMACEUTICAL COMPANIES

Chromatography at pH 3

janssen 🖌

Chromatography at pH 11

janssen_

Optimization of immunoprecipitation

First optimization experiments were carried out on **brain homogenates of transgenic mouse expressing human Tau**, diluted in aCSF:

- Higher (p)Tau concentrations
- Availability for method optimization

Sample preparation optimization

- Amount of DTT
- Ab concentration
- Amount of beads
- On-bead digestion or elution

Focus on pT212 and/or pT217

IP experiments: human CSF

Detection of **di-phospho peptide** in CSF not expected:

- Not reported in literature
- Ab highest affinity for Tau with pT212/pT217

FOCUS on "2 p 2 m" peptide

- Reference standard + SIL ordered
- High noise levels and ionisation suppression

Mono-phospho peptides not detected!

Focus on "2 p 2 m peptide" – multi-dimensional LC

Quality control criteria

Method validation not possible in the traditional way due to scarcity of human CSF and endogenous presence of pTau.

Quality control criteria:

- Use of stable isotope internal standard (SIL)
- **Calibration curve:** method blanks (IP-ed artificial CSF) spiked at 0.5, 1, 2, 4, 6, 10 pM. Linear regression, $1/X^2$. Acceptance criteria: | %RE $| \le 20\%$ (LLOQ $\le 25\%$), at least 4 standards accepted.
- Blank: method blank, no SIL
- Zero: method blank with SIL
- Carry over
- QC samples:
 - IP depletion samples were analysed with SIMOA to confirm all pTau is captured during IP
 - **Human CSF samples** from CSF pools with **low, medium and high (p)Tau** concentrations. Evaluation criterium: concentration 2 p 2 m peptide: low Tau CSF < medium Tau CSF < high Tau CSF
 - **Repeatability:** 3 replicates of 2-fold diluted medium Tau CSF. Acceptance criterium: at least 2 out of 3 should be ≤ 20% of the mean value.
 - QC for batch acceptance: method blanks spiked at 4 pM and 8 pM, analysis before and after samples. Acceptance criteria: |%RE| ≤ 20%, at least 2 accepted, 1 of each set and 1 of each concentration.

Results clinical samples IP-LC-MSMS

Total pTau measured with IP LC-MS/MS correlates with Simoa measurement

Acknowledgments

Neurosciences

Discovery Bioanalysis

Clara Theunis

Dina Rodrigues Martins

Tine Loomans

Farid Jahouh

Development Bioanalysis

Marc Verhemeldonck

Luc Diels

Lieve Dillen

Marc Mercken

Karolien Grauwen

