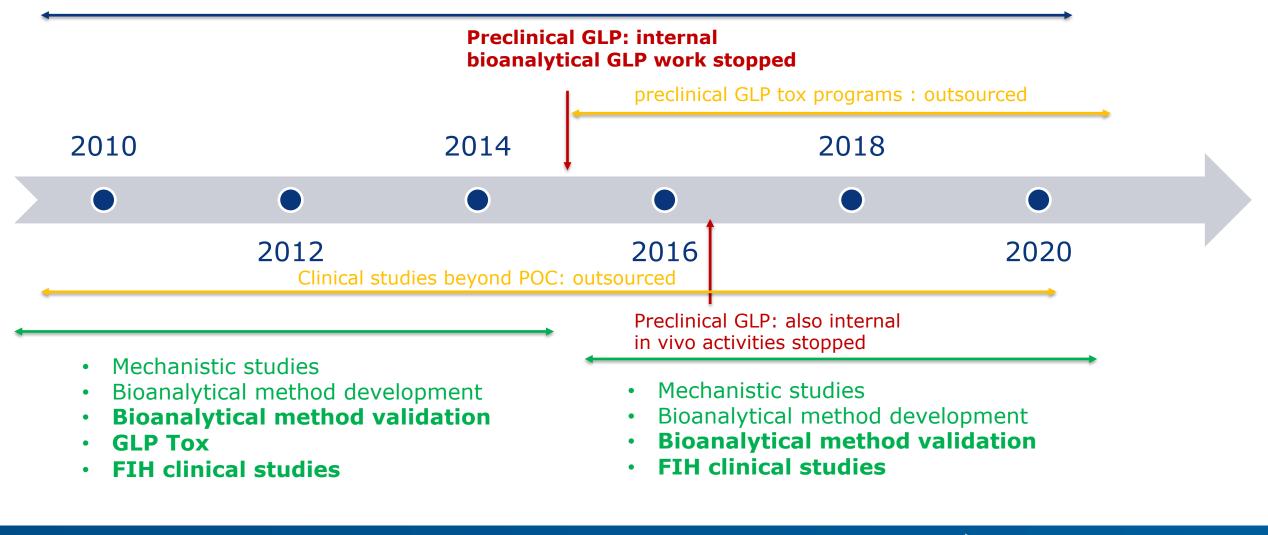



# Pharma/CRO alliance: what are the keys of success in transfer of assays

Pictured above: The structure of HIV.

Lieve Dillen – Janssen R&D – Development Bioanalysis EBF open meeting 17-20 November 2020




#### OUTLINE

- Introduction changing landscape situation anno 2020
- Internal method development
- Transfer to CROs and method development follow up
  - functions involved @ pharma and @ CRO
  - Information shared
  - Scientific discussions
  - Information exchange when and how to communicate
- Trouble shooting examples
- Conclusions: what are the keys?



#### **Changing Landscape over the years**

Some standard discovery bioanalytical support (entire process) outsourced to CRO



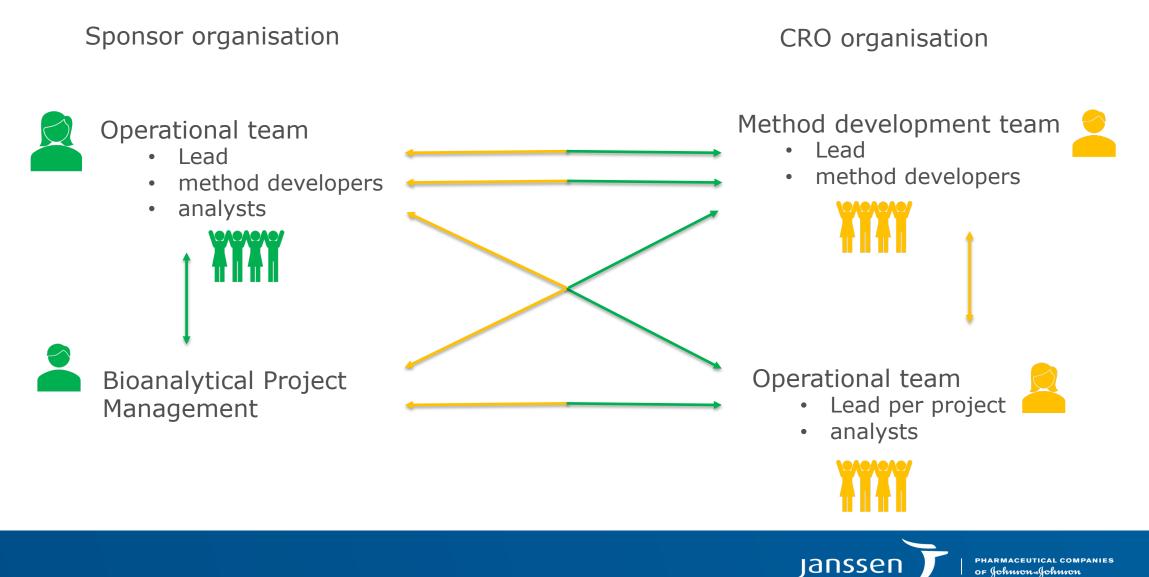
janssen 🔰

#### **Current model describing bioanalytical phases**

Bioanalytical strategy for post candidate selection drugs in house (green) and at CRO (orange)

| Dose-escalation studies (dose  | Method development    | Transfer method to CRO |
|--------------------------------|-----------------------|------------------------|
| selection for GLP tox studies) | Robustness evaluation | Hansier method to CRO  |

| method development and | Bioanalysis of GLP | Method development for FIH                  |
|------------------------|--------------------|---------------------------------------------|
| validation             | studies            | Scientific Validation/Regulatory Validation |


| Bioanalysis of FIH SAD | Method development (human plasma) | Bioanalysis in support of |
|------------------------|-----------------------------------|---------------------------|
| and MAD                | Regulatory Validation             | clinical program          |



#### Lean internal method development process

- Drug candidate results from internal portfolio
  - Tailored but as much as possible standardized approach
    - Collect physicochemical and stability information of the drug
    - Select optimal IS (analogue vs STIL dependent on availability)
    - Collect info on expected exposure range in studies
    - Species considered in GLP
  - LC-MS/MS optimization (ionization, retention, phospholipids, ...)
  - Sample prep, matrix effects, adsorption and stability
  - Robustness run = 1 A&P run (QCs 6 fold including LLOQ)
  - Transfer summary document shared
- Drug candidate acquired through in-licensing, acquisitions
  - Method evaluated decided whether to keep at CRO of partner or switch to preferred CROs
  - Method development in function of troubleshooting.

#### **Transfer of the method: interactions**



OF Johnson Johnson

6

#### **Transfer of the method**

- Via email of the sponsor's project manager to SD method development @CRO (and project manager @CRO if assigned).
  - Detailed method description
  - Structure and physicochemical properties
  - Summary of available information on metabolites, stability
- Follow up in TC
  - Detailed information can be disclosed (individual experiments)
  - Discussion on approach at CRO
- Example of method transfer documents shared



- Secured share points accessible for CRO and sponsor to exchange results/protocols
- During method development weekly updates

# **Considerations for modifications upon transfer of assay**

#### Most frequent changes discussed with CRO:

- chromatographic system (UHPLC or HPLC platform) (driven by availability of # instruments)
  caveats: carryover resolution with a metabolite
- MS platform (eg Sciex 6500 proposed while method was developed on API4000) risk of saturation at ULOQ
- injection volume (combined with additional dilution of supernatant) solubility, carryover, signal-to-noise ratio can be impacted
- regression model/weighing factors
- preparation of calibration curves (plasma calibration samples prepared in bulk versus calibration samples spiked freshly from solvent based spiking solutions)



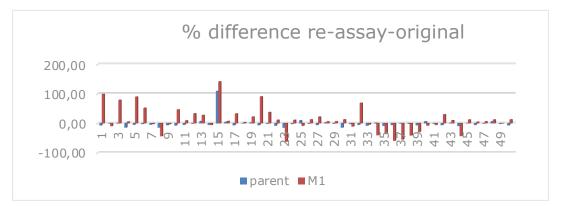
# Why do methods not (always) transfer one tot one?

- Even with identical equipment same performance not always realized
- LC-MS tubings/lengths and ID are different
- MS conditions:
  - Electrospray conditions (position of LC outlet versus orifice)
  - Condition of ionization source maintenance and intensity/type of samples analysed
  - Calibration
  - Resolution/IE settings of the quadrupoles
- Perceived unimportant details are unintentionally not included
- Solvents are from different quality/vendors
- Consumables are different and can impact method performance
- Storage conditions walk in freezers exposure to light
- Robust method should be tolerant to small changes

## **Example: unintentional change/unidentified impact**

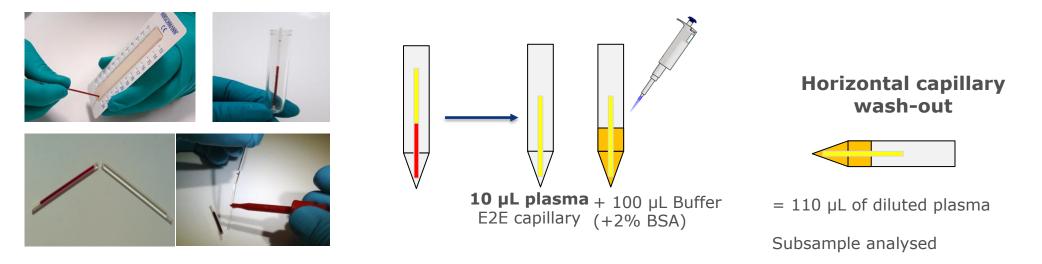
- Extensive internal experience with assay challenging project stability issues
  - Preclinical species validated internally
  - Criticality in the assay seems a small detail
    - Small amounts of organic were not tolerated
    - pH during precipitation critical
- Transfer of assay to CRO with extensive discussions on the details of the assay
- Assay performance issues during sample analysis
  - assay transferred back to method development team@CRO
- Adapted method instructions were accidentally not shared with sponsor
  - New method developer @CRO was not informed on critical aspect
  - New assay successfully validated and applied in GLP studies
- Study selected during sponsor audit results all within compliance but scientifically incorrect
- Revalidation and re-analysis needed
- Continued communication within and between organisations is key

10


#### **Example: unnotified difference**

- Assay for drug candidate validated @ sponsor's lab
- Beyond phase 1: outsourced to CRO
- @CRO: LTS (-20°C) > 1 year failed > -20% bias re-analysis confirmed the observation
- @sponsor: > 2 years LTS proven
- Interaction CRO sponsor: additional investigation @ sponsor
  - Stress light stability evaluation demonstrated light sensitivity
  - Walk in freezer (daily illumination) @CRO identified as root cause
  - Prolonged storage with intermittent exposure to light responsible for degradation
- Interaction and open discussion between partners is key
  - Shared responsibility




#### **Example : in licensed compound – validated method – failed ISR**

- 2-in-1 assay quantifies parent (R-CO-NH2) & M1 (R-COOH) validated at first CRO (not preferred provider) – no initial internal involvement
- ISR passes for parent but consistently failed for M1 (in clinical and GLP studies)
- Investigation in sponsor's lab:
  - M1 results reproducible after single dosing but not after multiple dosing
  - Investigation revealed study samples contain high levels of M1-glucuronide (up to 80x M1 conc. after RD)
  - Assay uses evaporation step; M1-glucuronide can decompose to M1
  - Assay re-developed without evaporation step; issue resolved
- New Assay conditions transferred to CRO
  - Revalidation
- Not all information is known during initial method development – responsibility of project manager to keep abreast of new information



#### introducing new approaches: CMS

• Sponsor: capillary microsampling introduced as standard sampling technique in rodent GLP studies



- Sponsor's experience in validated CMS assays halted with decision to stop internal GLP
- Sponsor built substantial experience in preclinical non GLP studies but experience with validating the assays was limited
- Mutual visits to CRO and sponsor organized to train practical aspects

#### introducing new approaches: CMS

- Considerations to be discussed upfront method development
  - Study samples diluted in buffer
    - Calibrators in capillaries
    - Calibrators in diluted plasma
    - Calibrators spiked to diluted plasma
    - QCs sampled as study samples
      - Prepare in capillaries wash out together with study samples
  - ISR samples diluted plasma samples for re-analysis
  - Additional stability program in diluted plasma
  - Additional burden for method development and bioanalytical lab



15

# **Example: Capillary microsampling**

- Project: parent drug validated @ CRO 2 metabolites qualified assay
- In preclinical program: 2 metabolites added to the validated assay
  - Internal standards: parent drug and M1 STIL available; STIL M1 used for M2
- During GLP program switched to CMS -> revalidation @ CRO
  - Combined validated assay for 3 analytes
  - STIL synthesis for M2
  - Calibrators prepared in diluted plasma
  - QCs in capillaries
- Validation: some STS and LTS failed for metabolites
  - Preparation errors due to complexity
  - Building experience with capillaries
  - variability especially for M2
- Mitigation discussed: scrutinize differences in lab practices

| Time                       |         | Time                       |         | Time                        |         |
|----------------------------|---------|----------------------------|---------|-----------------------------|---------|
| (days)                     | Bias(%) | (days)                     | Bias(%) | (days)                      | Bias(%) |
| 52 (-20°C,<br>cap)         | -15.3   | 74 (-20°C,<br>cap)         | -16.7   | 154 (-20°C,<br>cap)         | -13.0   |
| 52 (-20°C,<br>BSA diluted) | -4.9    | 74 (-20°C,<br>BSA diluted) | -7.8    | 154 (-20°C,<br>BSA diluted) | -22.3   |
| 52 (-70°C,<br>cap)         | -2.8    | 74 (-70°C,<br>cap)         | -2      | 154 (-70°C,<br>cap)         | -8.9    |
| 52 (-70°C,<br>BSA diluted) | -10     | 74 (-70°C,<br>BSA diluted) | -10.4   | 154 (-70°C,<br>BSA diluted) | -9.7    |

#### LTS for M2 (LQC 30 ng/mL)

#### **Example: Capillary microsampling**

- Mouse GLP study:
  - Many analytical runs rejected for M2 (QCs outside criteria)
  - ISR for M2 rejected due to QCs out of acceptance criteria
    - ISR results for M2 were within criteria
- Combined CRO and Sponsor investigation
  - Wash out solution slightly different
  - Sponsor used solvent spikes as calibration standards
  - Light sensitivity in solvent for M2 (amber versus foil protection)
- Not trivial to identify root cause but probably related to complexity (combined 3 analytes, smaller sample volumes, building experiences with capillaries)

#### **Keys to successful method transfer**

- Majority of assays transfer without problems
- Info sharing Info sharing Info sharing
- The devil is in the detail
- Regular/continued communication transparency/open minded provide the details (reluctance or only partial disclosure of raw data experienced)
- Install software tools share points or other secured portals to exchange (raw) data
- Building relationships/partnership at different levels (preferred partners)
  - Understand mutual processes
- Building trust and respect especially in difficult projects be constructive
- Consider external lab as an extension of your own lab

#### **Acknowledgments**

- Nico van de Merbel
- Remco Koster
- PRA bioanalytical team
- Tom Verhaeghe
- Marc De Meulder
- Hans Stieltjes
- Development bioanalytical department