JBF activities for protein analysis by LC-MS Past and future perspective

Japan Bioanalysis Forum (JBF) steering committee

Please note the presentation came from the discussions in JBF but it should not be construed to represent JBF's official views or policies

JBF activities for large molecule analysis by LC-MS

JBF Task Force for large molecule MS 2014-2018

>LC-MS for large molecule therapeutics (mainly therapeutic antibody)

- JBF Discussion Group
 2016-25 and 2017-31
 - "Quantitative analysis of endogenous large molecule substance by LC-MS"
 - >LC-MS for **protein biomarkers**

protein analysis by LC-MS

- JBF Discussion Group 2018-36
 - "Quantitative analysis of oligonucleotide therapeutics by LC-MS"
 - > LC-MS for oligonucleotides

Link to each presentation material are listed in the end of slide (supplemental martials)

JBF task force for large molecule MS

Scope

LC-MS quantification of therapeutic antibody utilizing enzymatic digestion (endogenous substance, i.e. biomarker, is out of scope)

Outcomes

- ✓ **Deliver Q&A** for BMV of large molecule LC/MS (by TF team)

 http://bioanalysisforum.jp/images/2015-6thJBFS/62 Outcomes%20from%20large%20molecule%20MS%20task%20force_goda.pdf
- ✓ Deliver Review paper (Chromatography 2018, 39, 7-9)
 (as a outcome of large molecule LC/MS Working Group supported by AMED programs*)

https://doi.org/10.15583/jpchrom.2017.018

^{*1} Studies on the acceleration of global harmonization for regulating safety and quality assurance of pharmaceuticals

^{*2} Establishment and standardization of novel safety evaluation methods for accelerating innovative medicine development and data acquisition using these methods

Key discussion points (technical)

Large molecule (LM) MS TF teams discussed and addressed the point to be considered for LM-LCMS compared with small molecule LC-MS

- Selection of surrogate peptides
 - Specificity of surrogate peptides in sample matrices

 CDR peptide is considered as the most specific peptide
- For non-clinical application, IgG-Fc peptides can be applicable as a generic peptides
- Sample preparation for LC-MS

Immunoaffinity purification

Denaturing

Reductive alkylation

Digestion

Peptide purification

Reproducibility of each step is important

Selection of internal standard (IS)

SIL peptide

SIL protein

Extended SIL-peptide

Timing for addition of IS was discussed

Key discussion points (validation)

- It was recommended to refer the LC guidelines for sample preparation procedures and validation items since the assay plat form is LC-MS. (Summary of proposed BMV parameters by JBF TF are attached at the end of the slide, supplemental martials)
- It would be appropriate to refer the LBA guidelines for acceptance criteria, since therapeutic antibody have been analyzed by LBA method.

Proposed assay criteria for accuracy and precision;

≥4conc. Levels (LLOQ, low, middle high)

 $N \ge 5$ in a run, ≥ 3 runs

Accuracy (mean): $\leq \pm 25\%$ at LLOQ, $\leq \pm 20\%$ at others

Precision: ≤25% at LLOQ, ≤20% at others

JBF Discussion Group 2016-25 and 2017-31 "Quantitative analysis of endogenous large molecule substance by LC-MS"

- JBF DG actively discussed technical aspect of protein LC-MS such as pretreatment procedures for large molecules, and utility of databases and software to searching the appropriate amino acid sequence for quantification, etc.
- DG also took a questionnaire in DG supporter and JBF partners to summarize the curent situation of the technologies in Japan

51% of respondent (include Pharma, CRO, and others) has an experience of protein LC-MS.

Antibody drugs and endogenous substances are main targets for LC-MS (as of 2018).

http://bioanalysisforum.jp/images/2017 8thJ BFS/P6 DG2016-25 HP.pdf

http://bioanalysisforum.jp/images/2018 9thJ BFS/P4 DG2017-31.pdf

6

Summary

- Protein LC-MS is not clearly included as a scope of the existing bioanalytical method validation (BMV) guidelines in Japan
- Protein LC-MS analyses are becoming increasingly important in pharmaceutical development.

Future perspective

 JBF would like to continue to facilitate discussion on Protein LC-MS in Japan.

Announcement of next JBF Symposium

12th JBF Symposium will be held from March 9 to 11, 2021 at Tower Hall Funabori (Tokyo) and Online

http://bioanalysisforum.jp/en/topics/12th_JBFsympo_info.html

Supplemental martials

Link to presentation martials

 JBF Task Force for large molecule MS, presented at JBF symposium in 2015-2018

http://bioanalysisforum.jp/images/2015 6thJBFS/62 Outcomes%20from%20large%20molecule%20MS%20task%20force goda.pdf http://bioanalysisforum.jp/images/2015 6thJBFS/52 Large%20BMVmolecule%20MS%20task%20force.pdf http://bioanalysisforum.jp/images/2018 9thJBFS/5 3 Nozomu%20Kato.pdf https://doi.org/10.15583/jpchrom.2017.018 (Review paper form large molecules LCMS WG in the BMV study Group)

JBF Discussion Group 2016-25 and 2017-31
 "Quantitative analysis of endogenous large molecule substance by LC-MS", presented at JBF symposium in 2017 and 2018

http://bioanalysisforum.jp/images/2017 8thJBFS/P6 DG2016-25 HP.pdf http://bioanalysisforum.jp/images/2018 9thJBFS/P4 DG2017-31.pdf

 JBF Discussion Group 2018-36 "Quantitative analysis of oligonucleotide therapeutics by LC-MS", presented at JBF symposium in 2019

http://bioanalysisforum.jp/images/2019 10thJBFS/DG2018-36.pdf

TF Proposal: Comparison with Guidelines (1)

JBF

	LC Guideline (2013)	LBA Guideline (2014)	JBF Task Force
Scope	Chromatography (LC/MS)	LBA	LC/MS
	Low-molecular-weight drugs	Peptides, Proteins, Low-molecular-weight drugs	Therapeutic Antibodies
Selectivity	 At least 6 individual sources Interfering response: ≤20% of analyte <lloq> ≤5% of IS</lloq> 	 At least 10 individual sources Blank samples, ≥80%: below LLOQ Accuracy: ≥80% of samples ≤±20% at near-LLOQ (≤±25% at LLOQ) 	 ▶ 6-10 individual sources ▶ Interfering response: ≤20% of analyte <lloq></lloq> ≤5% of IS
Specificity	➤ N/A	Evaluate: blank samples and blank samples spiked with related substance	➤ N/A
LLOQ	 Interfering response: ≥5 times of blank sample response Accuracy (mean): ≤±20% Precision: ≤20% 	<pre>Accuracy (mean):</pre>	 Interfering response: ≥5 times of blank sample response Accuracy (mean): ≤±25% Precision: ≤25%

TF Proposal: Comparison with Guidelines (2)

	LC Guideline (2013)	LBA Guideline (2014)	JBF Task Force
Calibration Curve	 ≥6 conc. levels Accuracy: ≤±20% at LLOQ ≤±15% at others Meet criteria (accuracy) ≥75% of standards ≥6 conc. levels including LLOQ & ULOQ 	 ≥6 conc. levels Accuracy: ≤±25% at LLOQ & ULOQ ≤±20% at others Meet criteria (accuracy) ≥75% of standards ≥6 conc. levels including LLOQ & ULOQ 	 ≥6 conc. levels Accuracy: ≤±25% at LLOQ ≤±20% at others Meet criteria (accuracy) ≥75% of standards ≥6 conc. levels including LLOQ & ULOQ
-Accuracy -Precision	 ≥4 conc. levels (LLOQ, low, middle, high) N≥5 in a run ≥ 3 runs Accuracy (mean): ≤±20% at LLOQ ≤±15% at others Precision: ≤20% at LLOQ ≤15% at others 	 ≥5 conc. levels (LLOQ, low, middle, high, ULOQ) ≥ 6 runs Accuracy (mean): ≤±25% at LLOQ & ULOQ ≤±20% at others Precision: ≤25% at LLOQ & ULOQ ≤20% at others Total error: ≤40% at LLOQ & ULOQ ≤30% at others 	 ≥4 conc. levels (LLOQ, low, middle, high) N≥5 in a run ≥ 3 runs Accuracy (mean): ≤±25% at LLOQ ≤±20% at others Precision: ≤25% at LLOQ ≤20% at others

TF Proposal: Comparison with Guidelines (3)

JBF

	LC Guideline (2013)	LC Guideline (2013) LBA Guideline (2014)	JBF Task Force
Matrix Effect	 At least 6 individual sources MF Precision: ≤15% or Determined conc. (spiked sample) Precision: ≤15% 	ources IF Precision: ≤15% · etermined conc. (spiked	 6-10 individual sources MF Precision: ≤20% or Determined conc. (spiked sample) Precision: ≤20%
Carry-Over	▶ Blank sample response after ULOQ sample: ≤20% of analyte <lloq> ≤5% of IS</lloq>	ter ULOQ sample: 20% of analyte <lloq></lloq>	 ▶ Blank sample response after ULOQ sample: ≤20% of analyte <lloq></lloq> ≤5% of IS
-Dilution Integrity -Dilution Linearity	 Dilution integrity N≥5 Accuracy (mean): ≤±15% Precision: ≤15% 	≥5 Accuracy (mean): ccuracy (mean): ≤±15% ≤±20%	 Dilution integrity N≥5 Accuracy (mean): ≤±20% Precision: ≤20%
Stability In Matrix	levels		 N≥3 at Low & High conc. levels Accuracy (mean): ≤±20%