JBF activities for protein analysis by LC-MS Past and future perspective # Japan Bioanalysis Forum (JBF) steering committee Please note the presentation came from the discussions in JBF but it should not be construed to represent JBF's official views or policies #### JBF activities for large molecule analysis by LC-MS JBF Task Force for large molecule MS 2014-2018 >LC-MS for large molecule therapeutics (mainly therapeutic antibody) - JBF Discussion Group 2016-25 and 2017-31 - "Quantitative analysis of endogenous large molecule substance by LC-MS" - >LC-MS for **protein biomarkers** protein analysis by LC-MS - JBF Discussion Group 2018-36 - "Quantitative analysis of oligonucleotide therapeutics by LC-MS" - > LC-MS for oligonucleotides Link to each presentation material are listed in the end of slide (supplemental martials) # JBF task force for large molecule MS #### Scope LC-MS quantification of therapeutic antibody utilizing enzymatic digestion (endogenous substance, i.e. biomarker, is out of scope) #### Outcomes - ✓ **Deliver Q&A** for BMV of large molecule LC/MS (by TF team) http://bioanalysisforum.jp/images/2015-6thJBFS/62 Outcomes%20from%20large%20molecule%20MS%20task%20force_goda.pdf - ✓ Deliver Review paper (Chromatography 2018, 39, 7-9) (as a outcome of large molecule LC/MS Working Group supported by AMED programs*) https://doi.org/10.15583/jpchrom.2017.018 ^{*1} Studies on the acceleration of global harmonization for regulating safety and quality assurance of pharmaceuticals ^{*2} Establishment and standardization of novel safety evaluation methods for accelerating innovative medicine development and data acquisition using these methods ## Key discussion points (technical) Large molecule (LM) MS TF teams discussed and addressed the point to be considered for LM-LCMS compared with small molecule LC-MS - Selection of surrogate peptides - Specificity of surrogate peptides in sample matrices CDR peptide is considered as the most specific peptide - For non-clinical application, IgG-Fc peptides can be applicable as a generic peptides - Sample preparation for LC-MS Immunoaffinity purification Denaturing Reductive alkylation Digestion Peptide purification Reproducibility of each step is important Selection of internal standard (IS) SIL peptide SIL protein **Extended SIL-peptide** Timing for addition of IS was discussed # Key discussion points (validation) - It was recommended to refer the LC guidelines for sample preparation procedures and validation items since the assay plat form is LC-MS. (Summary of proposed BMV parameters by JBF TF are attached at the end of the slide, supplemental martials) - It would be appropriate to refer the LBA guidelines for acceptance criteria, since therapeutic antibody have been analyzed by LBA method. Proposed assay criteria for accuracy and precision; ≥4conc. Levels (LLOQ, low, middle high) $N \ge 5$ in a run, ≥ 3 runs Accuracy (mean): $\leq \pm 25\%$ at LLOQ, $\leq \pm 20\%$ at others Precision: ≤25% at LLOQ, ≤20% at others # JBF Discussion Group 2016-25 and 2017-31 "Quantitative analysis of endogenous large molecule substance by LC-MS" - JBF DG actively discussed technical aspect of protein LC-MS such as pretreatment procedures for large molecules, and utility of databases and software to searching the appropriate amino acid sequence for quantification, etc. - DG also took a questionnaire in DG supporter and JBF partners to summarize the curent situation of the technologies in Japan 51% of respondent (include Pharma, CRO, and others) has an experience of protein LC-MS. Antibody drugs and endogenous substances are main targets for LC-MS (as of 2018). http://bioanalysisforum.jp/images/2017 8thJ BFS/P6 DG2016-25 HP.pdf http://bioanalysisforum.jp/images/2018 9thJ BFS/P4 DG2017-31.pdf 6 ## Summary - Protein LC-MS is not clearly included as a scope of the existing bioanalytical method validation (BMV) guidelines in Japan - Protein LC-MS analyses are becoming increasingly important in pharmaceutical development. #### **Future perspective** JBF would like to continue to facilitate discussion on Protein LC-MS in Japan. ### Announcement of next JBF Symposium 12th JBF Symposium will be held from March 9 to 11, 2021 at Tower Hall Funabori (Tokyo) and Online http://bioanalysisforum.jp/en/topics/12th_JBFsympo_info.html #### Supplemental martials #### Link to presentation martials JBF Task Force for large molecule MS, presented at JBF symposium in 2015-2018 http://bioanalysisforum.jp/images/2015 6thJBFS/62 Outcomes%20from%20large%20molecule%20MS%20task%20force goda.pdf http://bioanalysisforum.jp/images/2015 6thJBFS/52 Large%20BMVmolecule%20MS%20task%20force.pdf http://bioanalysisforum.jp/images/2018 9thJBFS/5 3 Nozomu%20Kato.pdf https://doi.org/10.15583/jpchrom.2017.018 (Review paper form large molecules LCMS WG in the BMV study Group) JBF Discussion Group 2016-25 and 2017-31 "Quantitative analysis of endogenous large molecule substance by LC-MS", presented at JBF symposium in 2017 and 2018 http://bioanalysisforum.jp/images/2017 8thJBFS/P6 DG2016-25 HP.pdf http://bioanalysisforum.jp/images/2018 9thJBFS/P4 DG2017-31.pdf JBF Discussion Group 2018-36 "Quantitative analysis of oligonucleotide therapeutics by LC-MS", presented at JBF symposium in 2019 http://bioanalysisforum.jp/images/2019 10thJBFS/DG2018-36.pdf ## TF Proposal: Comparison with Guidelines (1) **JBF** | | LC Guideline (2013) | LBA Guideline (2014) | JBF Task Force | |-------------|---|---|---| | Scope | Chromatography (LC/MS) | LBA | LC/MS | | | Low-molecular-weight drugs | Peptides, Proteins,
Low-molecular-weight drugs | Therapeutic Antibodies | | Selectivity | At least 6 individual sources Interfering response: ≤20% of analyte <lloq> ≤5% of IS</lloq> | At least 10 individual sources Blank samples, ≥80%: below LLOQ Accuracy: ≥80% of samples ≤±20% at near-LLOQ (≤±25% at LLOQ) | ▶ 6-10 individual sources ▶ Interfering response: ≤20% of analyte <lloq></lloq> ≤5% of IS | | Specificity | ➤ N/A | Evaluate: blank samples
and blank samples spiked
with related substance | ➤ N/A | | LLOQ | Interfering response: ≥5 times of blank sample response Accuracy (mean): ≤±20% Precision: ≤20% | <pre>Accuracy (mean):</pre> | Interfering response: ≥5 times of blank sample response Accuracy (mean): ≤±25% Precision: ≤25% | ## TF Proposal: Comparison with Guidelines (2) | | LC Guideline (2013) | LBA Guideline (2014) | JBF Task Force | |-------------------------|--|--|---| | Calibration
Curve | ≥6 conc. levels Accuracy:
 ≤±20% at LLOQ
 ≤±15% at others Meet criteria (accuracy) ≥75% of standards ≥6 conc. levels including LLOQ & ULOQ | ≥6 conc. levels Accuracy: ≤±25% at LLOQ & ULOQ ≤±20% at others Meet criteria (accuracy) ≥75% of standards ≥6 conc. levels including LLOQ & ULOQ | ≥6 conc. levels Accuracy: ≤±25% at LLOQ ≤±20% at others Meet criteria (accuracy) ≥75% of standards ≥6 conc. levels including LLOQ & ULOQ | | -Accuracy
-Precision | ≥4 conc. levels (LLOQ, low, middle, high) N≥5 in a run ≥ 3 runs Accuracy (mean): ≤±20% at LLOQ ≤±15% at others Precision: ≤20% at LLOQ ≤15% at others | ≥5 conc. levels (LLOQ, low, middle, high, ULOQ) ≥ 6 runs Accuracy (mean): ≤±25% at LLOQ & ULOQ ≤±20% at others Precision: ≤25% at LLOQ & ULOQ ≤20% at others Total error: ≤40% at LLOQ & ULOQ ≤30% at others | ≥4 conc. levels (LLOQ, low, middle, high) N≥5 in a run ≥ 3 runs Accuracy (mean): ≤±25% at LLOQ ≤±20% at others Precision: ≤25% at LLOQ ≤20% at others | ## TF Proposal: Comparison with Guidelines (3) JBF | | LC Guideline (2013) | LC Guideline (2013) LBA Guideline (2014) | JBF Task Force | |--|--|--|--| | Matrix
Effect | At least 6 individual sources MF Precision: ≤15% or Determined conc. (spiked sample) Precision: ≤15% | ources
IF Precision: ≤15%
·
etermined conc. (spiked | 6-10 individual sources MF Precision: ≤20% or Determined conc. (spiked sample) Precision: ≤20% | | Carry-Over | ▶ Blank sample response after ULOQ sample:
≤20% of analyte <lloq>
≤5% of IS</lloq> | ter ULOQ sample:
20% of analyte <lloq></lloq> | ▶ Blank sample response after ULOQ sample: ≤20% of analyte <lloq></lloq> ≤5% of IS | | -Dilution
Integrity
-Dilution
Linearity | Dilution integrity N≥5 Accuracy (mean): ≤±15% Precision: ≤15% | ≥5 Accuracy (mean):
ccuracy (mean): ≤±15% ≤±20% | Dilution integrity N≥5 Accuracy (mean): ≤±20% Precision: ≤20% | | Stability
In Matrix | levels | | N≥3 at Low & High conc. levels Accuracy (mean): ≤±20% |