

CUSTOM-BUILT RESEARCH[™]

Development and Validation of a Trastuzumab/Pertuzumab Hybrid LC-MS Assay for Clinical Development

Fabrizia Fusetti, PhD Scientific Director Bioanalysis

EBF Open Symposium November 2020

- Proteins, therapeutic antibodies, multispecific, ADC's, peptides, peptide-drug conjugates, oligonucleotides
- Intrinsic molecular complexity/heterogeneity, large molecular weight
- Selectivity and sensitivity requirements
- Expected or demonstrated cross reactivity
- Stage of drug development (exploratory, preclinical, clinical)
- Regulatory aspects
- Availability of well-defined reagents (specific antibodies for Ligand Binding Assay)
- Timelines

- Human epidermal growth factor receptor 2 (HER2) is highly expressed in on the surface of various tumors
- Trastuzumab and Pertuzumab are therapeutic monoclonal antibodies that bind to different domains of HER2
- Complementary mechanism of action fully inhibits the receptor
- Used in combined cancer therapies

Bioanalytical Challenges

- Analytes cannot easily be distinguished and quantified in one ligand binding assay
- Low sample volume from patient studies

- Surrogate peptide will determine selectivity and ability to multiplex
 - 6-25 amino acids
 - Hydrophobicity and length of the peptides (retention, ionization and fragmentation)
 - Cross-reactivity with endogenous proteins and comedications

Adapted Lopes dos Santos (2018) Braz..J. Pharm. Sci.

T-mAb(IgG1)SDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST SDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST SDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST SDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST genericN-mAb(IgG1)KASGITFSNSGMHWVRQAPGKGLEWVAVIWYDGSKRYYADSVKGRFTISRDNSKNTLF AASGFNIKDTYIHWVRQAPGKGLEWVARIYPNGYTRYADSVKGRFTISRDNSKNTLFL AASGFTFTDYTMDWVRQAPGKGLEWVADVNPSGGSIYNQRFKGRFTLSVDRSKNTLYL AASGYTFTNYGMNWVRQAPGKGLEWVADVNPSGGSIYNQRFKGRFTLSVDRSKNTLYL MASGYTFTNYGMNWVRQAPGKGLEWVGWINTTGEPTYAADFKRRFTFSLDTSKSTAYL mAb-specific	N-mAb	(IgG4)	SDEQLKSGTASVVCLLNNFYPREAKVQWK VDNALQSGNSQESVTEQDSK DSTYSLSST
P-mAb(IgG1)SDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST SDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSST GenericN-mAb(IgG1)KASGITFSNSGMHWVRQAPGKGLEWVAVIWYDGSKRYYADSVKGRFTISRDNSKNTLF AASGFNIKDTYIHWVRQAPGKGLEWVARIYPNGYTRYADSVKGRFTISRDNSKNTLF P-mAbAASGFNIKDTYIHWVRQAPGKGLEWVARIYPNGYTRYADSVKGRFTISRDNSKNTLYL AASGFTFTDYTMDWVRQAPGKGLEWVADVNPSGGSIYNQRFKGRFTLSVDRSKNTLYL AASGYTFTNYGMNWVRQAPGKGLEWVADVNPSGGSIYNQRFKGRFTLSVDRSKNTLYL MASGYTFTNYGMNWVRQAPGKGLEWVGWINTTGEPTYAADFKRRFTFSLDTSKSTAYL mAb-specific	T-mAb	(IgG1)	SDEQLKSGTASVVCLLNNFYPREAKVQWK VDNALQSGNSQESVTEQDSK DSTYSLSST
B-mAb (IgG1)SDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTgenericN-mAb (IgG4)KASGITFSNSGMHWVRQAPGKGLEWVAVIWYDGSKRYYADSVKGRFTISRDNSKNTLFT-mAb (IgG1)AASGFNIKDTYIHWVRQAPGKGLEWVARIYPNGYTRYADSVKGRFTISADTSKNTAYLP-mAb (IgG1)AASGFTFTDYTMDWVRQAPGKGLEWVADVNPSGGSIYNQRFKGRFTLSVDRSKNTLYLB-mAb (IgG1)AASGYTFTNYGMNWVRQAPGKGLEWVADVNPSGGSIYNQRFKGRFTLSVDRSKNTLYLB-mAb (IgG1)AASGYTFTNYGMNWVRQAPGKGLEWVGWINTTGEPTYAADFKRRFTFSLDTSKSTAYL mAb-specific	P-mAb	(IgG1)	SDEQLKSGTASVVCLLNNFYPREAKVQWK VDNALQSGNSQESVTEQDSK DSTYSLSST
genericN-mAb (IgG4)KASGITFSNSGMHWVRQAPGKGLEWVAVIWYDGSKRYYADSVKGRFTISRDNSKNTLFT-mAb (IgG1)AASGFNIKDTYIHWVRQAPGKGLEWVARIYPNGYTRYADSVKGRFTISADTSKNTAYLP-mAb (IgG1)AASGFTFTDYTMDWVRQAPGKGLEWVADVNPSGGSIYNQRFKGRFTLSVDRSKNTLYLB-mAb (IgG1)AASGYTFTNYGMNWVRQAPGKGLEWVGWINTTGEPTYAADFKRRFTFSLDTSKSTAYLmAb-specific	B-mAb	(IgG1)	SDEQLKSGTASVVCLLNNFYPREAKVQWK VDNALQSGNSQESVTEQDSK DSTYSLSST
N-mAb(IgG4)KASGITFSNSGMHWVRQAPGKGLEWVAVIWYDGSKRYYADSVKGRFTISRDNSKNTLFT-mAb(IgG1)AASGFNIKDTYIHWVRQAPGKGLEWVARIYPNGYTRYADSVKGRFTISADTSKNTAYLP-mAb(IgG1)AASGFTFTDYTMDWVRQAPGKGLEWVADVNPSGGSIYNQRFKGRFTLSVDRSKNTLYLB-mAb(IgG1)AASGYTFTNYGMNWVRQAPGKGLEWVGWINTTGEPTYAADFKRRFTFSLDTSKSTAYLmAb-specific			generic
T-mAb (IgG1)AASGFNIKDTYIHWVRQAPGKGLEWVARIYPNGYTRYADSVKGRFTISADTSKNTAYLP-mAb (IgG1)AASGFTFTDYTMDWVRQAPGKGLEWVADVNPSGGSIYNQRFKGRFTLSVDRSKNTLYLB-mAb (IgG1)AASGYTFTNYGMNWVRQAPGKGLEWVGWINTTGEPTYAADFKRRFTFSLDTSKSTAYLmAb-specific	N-mAb	(IgG4)	KASGITFSNSGMHWVRQAPGK GLEWVAVIWYDGSK RYYADSVKGR FTIS RDNSKNTLF
P-mAb (IgG1) AASGFTFTDYTMDWVRQAPGKGLEWVADVNPSGGSIYNQRFKGRFTLSVDRSKNTLYL B-mAb (IgG1) AASGYTFTNYGMNWVRQAPGKGLEWVGWINTTGEPTYAADFKRRFTFSLDTSKSTAYL mAb-specific	T-mAb	(IgG1)	AASGFNIKDTYIHWVRQAPGKGLEWVAR IYPNGYTR YADSVKGR FTISADTS KNTAYL
B-mAb (IgG1) AASGYTFTNYGMNWVRQAPGKGLEWVGWINTTGEPTYAADFKRRFTFSLDTSKSTAYL mAb-specific	P-mAb	(IgG1)	AASGFTFTDYTMDWVRQAPGK GLEWVADVNPSGGSIYNQR FKGR FTLSVDR SKNTLYL
mAb-specific	B-mAb	(IgG1)	AASGYTFTNYGMNWVRQAPGK GLEWVGWINTTGEPTYAADFK RR FTFSLDTS KSTAYL
			mAb-specific

Hybrid LC-LC/MS - General Experimental Setup

BOTTOM-UP QUANTITATIVE METHOD - PROTEOLYTIC PEPTIDE IS EQUIMOLAR TO PROTEIN CONCENTRATION

Affinity Purification magnetic beads ready-to-use or customized

Protein A, L, G Immuno-capture (Anti-Fc, Anti-ID, Anti-payload) Functional pull-out (receptor, ligand, cofactor)

Sample treatment

Denaturation Reduction Alkylation

De-glycosylation

Proteolysis

SIL surrogate

peptide

Trypsin LysC, GluC, AspN, ... Quantifier Surrogate peptide (Qualifier peptides)

5

Hybrid LC-LC/MS - General Experimental Setup

BOTTOM-UP QUANTITATIVE METHOD – PROTEOLYTIC PEPTIDE IS EQUIMOLAR TO PROTEIN CONCENTRATION

Analyte	Surrogate peptide	(amu)	(amu)	(min)
Trastuzumab	IYPTNGYTR	542.8	404.7	1.3
Pertuzumab	FTLSVDR	419.5	589.2	2.7
SILuMab	DTLMISR*(¹³ C ₆ ¹⁵ N ₄)	423.2	516.3	2.2

Deamidation of IYPTNGYTR Surrogate Peptide

NG motif in surrogate peptide indicates a susceptibility for deamidation

From IYPTNGYTR to IYPTDGYTR

Method Validated in Human Serum

90	Pertuzumab ·
85	
80	
75	
70	
65	
60	
55-	
50	
45	
40-	
35	X
301	
20	
15	
10-	
5	500 – 500,000 ng/mL
0	
ò	20 40 60 80 160 120 140 160 180 200 220 240 260 280 300 320 340 380 400 420 440 480 500

PA2	6.6	16.5	7.4	13.2	
PA3	5.6	3.2	7.4	10.7	
	LLOQ	LQC	MQC	HQC	
PA1	8.5	8.2	4.0	4.2	
PA2	18.9	5.8	14.8	5.2	
PA3	8.6	4.0	5.7	9.8	
Accuracy (%RE)					
	LLOQ	LQC	MQC	нос	
PA1	0.7	10.4	13.7	15.3	
PA2	6.6	16.5	7.4	13.2	
PA3	5.6	3.2	7.4	10.7	

Precision (%CV)

LQC

13.2

10.3

3.3

Accuracy (|%RE|)

LQC

10.4

MQC

4.8

6.7

4.9

MQC

13.7

HQC

6.4

7.0

10.0

HQC

15.3

LLOQ

7.0

7.6

4.5

LLOQ

0.7

PA1

PA2

PA3

PA1

Method Validated in Human Serum

Precision (%CV)					
	LLOQ LQC MQC HQC				
PA1	7.0	13.2	4.8	6.4	
PA2	7.6	10.3	6.7	7.0	
PA3	4.5	3.3	4.9	10.0	
	Acci	uracy (%	%RE)		
	LLOQ	LQC	MQC	HQC	
PA1	0.7	10.4	13.7	15.3	
PA2	6.6	16.5 7.4		13.2	
PA3	3 5.6 3.2		7.4	10.7	
	LLOQ	LQC	MQC	HQC	
PA1	8.5	8.2	4.0	4.2	
PA2	18.9	9 5.8 14.8 5.2		5.2	

	LQC	MQC	HQC
Mean	0.717	19.7	202
SD	0.066	1.89	15
%RE	-4.4	-1.6	1.2
%CV	9.3	9.6	7.3

	LLOQ	LQC	MQC	HQC		
PA1	1 8.5 8.2		4.0	4.2		
PA2	18.9	5.8	14.8	5.2		
PA3	8.6	4.0	5.7	9.8		
	Accuracy (%RE)					
	LLOQ LQC MQC HQC					
PA1	0.7	10.4	13.7	15.3		
PA2	6.6	16.5	7.4	13.2		
PA3	5.6	3.2	7.4	10.7		

	LQC	MQC	HQC
Mean	1.504	40.5	388
SD	0.112	2.58	23
%RE	0.3	1.3	-3.0
%CV	7.4	6.4	6.0

Schokker et al. (2020) mAbs 12 (1), 1795492

- 10–15% of breast cancer and esophagogastric cancer patients are HER2 positive, and HER2 can be used for targeted therapy in these patients
- 40 esophageal cancer patients (EACs) enrolled in seven centers in the Netherlands received chemoradiation in addition to:
 - Trastuzumab
 - 4 mg/kg on day 1
 - 2 mg/kg per week during weeks 2 to 6
 - 6 mg/kg per week during weeks 7, 10, and 13
 - Pertuzumab
 - 840 mg every 3 weeks
- PK and biomarkers to asses exposure-response relationship
- ▶ 57% subjects 3-year progression free
- Overall survival = 71% (higher for HER2 positive patients with a +3 overexpression)
- Pharmacokinetic analysis (670 study samples) did not correlate with survival or pathologic response

Cancer Center Amsterdam

Stroes C.I. et al. (2019) J Clin Oncol.

QPS

Mean trough and peak concentrations in serum (mean $C_{min} < 20 \mu g/mL$)

Schokker et al. (2020) mAbs 12 (1), 1795492; Stroes C.I. et al. (2019) J Clin Oncol.

QP:

▶ Increasing application of combined immuno-therapies → higher need for accurate multiplex PK assays

Superior selectivity of hybrid LC-MS/MS is a valuable alternative to traditional ligand binding methods

- Accurate and selective for the simultaneous or individual determination of trastuzumab and pertuzumab
- ▶ Validated according to the current FDA/EMA guidelines for large molecule bioanalysis
- Robust and stable throughout a long period of time fit for monitoring patient studies
- Minimal sample volume
- Sufficient throughput (10 min injection-to-injection, >120 samples/day)
- Easily adaptable to multiplex quantifications of other mAb combinations in non-clinical and clinical studies

Schokker et al. (2020) mAbs 12 (1), 1795492

Sandor Schokker

Hanneke W.M. van Laarhoven

Francesco Bonardi

- Heije Busker
- Thomas Fokkinga
- Chris Williams
- Martijn Hilhorst

CUSTOM-BUILT RESEARCH™

Thank You