Lowering the LC-MS/MS Assay Quantitation Limit to 50 pg/mL for Ranibizumab in Human Plasma after Intravitreal Administration by Using SCIEX Triple Quad[™] 7500 LC-MS/MS System – QTRAP® Ready

Outline

Background

2

1

3

4

Comparison of Platforms

Validation Data

Chromatograms

Conclusions

https://eyewire.news/articles/lucentis-05-mg-prefilled-syringenow-available-to-order-in-the-us/

Ranibizumab

https://maculacenter.com/eye-procedures/avastin/

- Trade name: Lucentis (Genentech)
- Approved by the FDA in 2006 to treat wet Age-related Macular Degeneration (AMD)
 - Subsequently approved for the treatment of diabetic retinopathy, diabetic macular edema, macular edema following retinal vein occlusion, and myopic choroidal neovascularization
- Intravitreal Administration
- Humanized Fab Biologic Drug, produced from mouse spleen cells immunized with VEGF-A
 - ~ 48,000 Da

VEGF-A Inhibitors

- Presence of VEGF-A triggers production of new blood vessels
- Patients with AMD have increased VEGF-A, which leads to overproduction of abnormal leaky blood vessels, resulting in blindness
- Blocks angiogenesis by binding to (and therefore inhibiting) VEGF-A

https://www.avastin-hcp.com/about-avastin/proposed-moa.html

Purpose of Developing a Method for Bioanalysis of Ranibizumab

https://www.gyngroup.com/services/pharmacogenomics

- Therapeutic Drug Monitoring
 - Personalized medicine
 - Evaluation of patient toxicity and efficacy in the clinical setting
- To support future clinical trials
 - Additional indications
 - Biosimilars
 - Lucentis Patent Expiry June 2020

Bioanalysis of Proteins

- LBA Traditional method
 - Advantages: ease-of-use, acceptance, equipment costs, throughput, sensitivity
 - Drawbacks: heavy reliance on customized special reagents, selectivity issues & cross-reactivity (ie ADA, VEGF)
- Use of LC-MS/MS method as an alternative or complementary technique
 - Advantages: decrease interference, increased selectivity (MS/MS MRM)

Created using Biorender Software

Overview of Comparison Studies

- Quantitation of Ranibizumab in human plasma after intravitreal administration
- Originally Fully Validated at PPD
 - SCIEX Triple Quad 6500 System
 - Calibration Range from 0.3 to 100 ng/mL
- Comparison of Mass Specs Fit-for-Purpose Cross Platform Evaluation
 - Evaluation to lower the LLOQ using novel MS platform
 - SCIEX QTRAP 6500+ System (meant to represent the original validation conditions for new evaluation) compared to SCIEX 7500 System
 - Calibration Range from 0.05 to 100 ng/mL
 - Validation experiments: accuracy and precision, unfortified specificity, and fortified specificity

Ranibizumab Bioanalysis by LC-MS/MS Sample Extraction Prep Design

250-μL sample with intact drug in matrix

Enrichment Step: Immunoaffinity Capture

• Capture reagent (HCA182, anti-Id) and magnetic beads (Strep-Tactin)

Denaturation (Heat, Rapigest), reduction (DTT), alkylation (IAM)

Digestion (Trypsin) • Addition of Peptide IS (VLIY-IS)

Analysis of Surrogate Peptide

- Separation by LC
- Detection by MS/MS

LC-MS/MS Optimized Conditions Original validation - PPD

Analytical Column	Acquity UPLC BEH C ₁₈ , 130Å, 2.1mm x 50mm, 1.7 μ m
Guard Column	Acquity UPLC Protein BEH C4 VanGuard Pre- column, 300Å, 2.1 mm X 5 mm, 1.7 μm
Column Temperature	60°C
Mobile Phase A	0.1% Formic acid in Water
Mobile Phase B	0.1% Formic acid in ACN
Flow Rate	0.4 mL/min
MP Gradient (eluting pump)	3.0 – 8.0 min 10-30%B
Ionization Source	Positive Electrospray Ionization
Mass Spectrometer (QqQ)	SCIEX Triple Quad™ 6500 LC-MS/MS System
Surrogate Peptides	VLIYFTSSLHSGVPSR (quantitative) and LSCAASGYDFTHYGMNWVR (ranibizumab specific, confirmatory)
Internal Standard	VLIYF*TSSLHSGVPSR [F*=Phe(13C9,15N)]
MRM Transitions	$588.3 (+3) \rightarrow 719.4 (y13, +2) (analyte);$ $591.3 (+3) \rightarrow 724.4 (y13, +2) (IS)$
Calibration Range	0.3 to 100 ng/mL

LC-MS/MS Optimized Conditions For comparison studies

Analytical Column	Acquity UPLC BEH C ₁₈ , 130Å, 2.1mm x 50mm, 1.7μm
Column Temperature	60°C
Mobile Phase A	0.1% Formic acid in Water
Mobile Phase B	0.1% Formic acid in ACN
Flow Rate	0.4 mL/min
MP Gradient (eluting pump)	0.5 – 12.5 min 3-21%B
Ionization Source	Positive Electrospray Ionization
Mass Spectrometer (QqQ)	QTRAP® 6500+ LC-MS/MS System and SCIEX 7500 System
Surrogate Peptides	VLIYFTSSLHSGVPSR (quantitative) and LSCAASGYDFTHYGMNWVR (ranibizumab specific, confirmatory)
Internal Standard	VLIYF*TSSLHSGVPSR [F*=Phe(13C9,15N)]
MRM Transitions	$588.3 (+3) \rightarrow 719.4 (y13, +2) (analyte);$ $591.3 (+3) \rightarrow 724.4 (y13, +2) (IS)$
Calibration Range	0.05 to 100 ng/mL

Mass Spectrometer Platforms Tested

The SCIEX 7500 System contains a larger sampling orifice than the SCIEX QTRAP 6500+ System and a novel dual stage RF ion guide that incorporates a dodecapole in the first stage and new ion source, allowing for increased sensitivity.

SCIEX QTRAP 6500+ System

SCIEX 7500 System

Human Plasma Calibration Curves (Linear, 1/x²) – 0.05 to 100 ng/mL

SCIEX QTRAP 6500+ System

 $R^2 = 0.9891$

Due to sensitivity constraints, low calibration standards were deleted from the curve, resulting in LLOQ of 250 pg/mL

SCIEX 7500 System

 $R^2 = 0.9972$

Targeted LLOQ was achieved at 50.0 pg/mL

Human Plasma Calibration Curves (Linear, 1/x²) – 0.05 to 100 ng/mL

SCIEX 6500+ System; R² = 0.9891

Nominal Conc (ng/mL)	Mean Conc n=2 (ng/mL)	% Accuracy
0.0500	N/A	N/A
0.0750	N/A	N/A
0.100	N/A	N/A
0.250	0.220	88
1.00	0.917	92
5.00	4.74	95
20.0	21.0	105
80.0	83.9	105
100	106	106

SCIEX 7500 System; R² = 0.9972

Nominal Conc (ng/mL)	Mean Conc n=2 (ng/mL)	% Accuracy
0.0500	0.0517	103
0.0750	0.0737	98
0.100	0.0978	98
0.250	0.252	101
1.00	0.970	97
5.00	4.84	97
20.0	20.1	100
80.0	82.9	104
100	103	103

Validation Results Accuracy and precision

Criteria: %Bias (accuracy) & %CV (precision) $\leq 25\%$ (LLOQ) / 20% (all others)

Diatform		Theoretical Concentration in Human Plasma (ng/mL)				
Plation		0.3	oretical Concentration in Human Plasma (r.3N/A0.7550.0 a -0.3N/A0.6 - 0.743 - 466-3N/A-1710 -138 a -15N/A4 - 81 - 5 a 266N/A0.65144.4 a 1.4N/A-13.2-11.3 a 5.8N/A6.684.35 a	75.0		
	Intra-Mean Conc (ng/mL)	0.2 – 0.3	N/A	0.6 - 0.7	43 - 46	67 - 68
SCIEX TripleIntraday Accuracy (n=6, 3 days) (%bias)-27 - 3SCIEX Triple OuadIntraday Precision (n=6, 3 days) (%CV)6 - 15	N/A	-1710	-138	-109		
	Intraday Precision (n=6, 3 days) (%CV)	6 - 15	N/A	4 - 8	1 – 5	2 – 5
6500	Inter-Mean Conc (ng/mL)	0.266	N/A	0.651	44.4	67.6
System (org. Val)	Interday Accuracy (n=18, 3 days combined)	-11.4	N/A	-13.2	-11.3	-9.84
	Interday Precision (n=18, 3 days combined)	16.8	N/A	6.68	4.35	3.89

Validation Results Accuracy and precision

Criteria: %Bias (accuracy) & %CV (precision) $\leq 25\%$ (LLOQ) / 20% (all others)

Diatform		Theoretical Concentration in Human Plasma (ng/mL)					
Plation		Theoretical Concentration in Human Plasma (not specify the specific the specify the specific the specify th	75.0				
	Intra-Mean Conc (ng/mL)	0.03 – 0.04	0.01 - 0.06	0.06 - 0.2	49 - 54	75 - 82	
QTRAP 6500+ System	Intraday Accuracy (n=6, 3 days) (%bias)	-3324	-9115	-63 – 24	-1 - 7	0 - 9	
	Intraday Precision (n=6, 3 days) (%CV)	22 - 105	12 - 155	4 - 60	3 – 5	3 – 7	
	Inter-Mean Conc (ng/mL)	0.0364	0.0406	0.126	51.5	78.6	
	Interday Accuracy (n=18, 3 days combined)	-27.2	-45.8	-15.9	3.08	4.76	
	Interday Precision (n=18, 3 days combined)	69.2	72.6	60.5	5.56	6.42	

Validation Results Accuracy and precision

Criteria: %Bias (accuracy) & %CV (precision) $\leq 25\%$ (LLOQ) / 20% (all others)

Diatform		Theoretical Concentration in Human Plasma (ng/mL)				
Plation		0.05	A Concentration in Human Plasma (0.075 0.15 50.0 1 0.066 - 0.08 0.1 - 0.2 50 - 52 1 -25 - 1 -5 - 14 1 - 4 1 9 - 13 5 - 6 4 - 9 1 0.0647 0.152 51.5 1 17.7 10.2 6.23 1	75.0		
	Intra-Mean Conc (ng/mL)	0.04 – 0.06	0.06 – 0.08	0.1 - 0.2	50 - 52	75 – 79
SCIEX 7500	Intraday Accuracy (n=6, 3 days) (%bias)	-13 - 16	-25 – 1	-5 - 14	1 - 4	0 - 6
	Intraday Precision (n=6, 3 days) (%CV)	13 - 20	9 - 13	5 - 6	4 – 9	3 – 5
System	Inter-Mean Conc (ng/mL)	0.0517	0.0647	0.152	51.5	76.7
	Interday Accuracy (n=18, 3 days combined)	3.42	-13.7	1.54	3.03	2.29
	Interday Precision (n=18, 3 days combined)	19.8	17.7	10.2	6.23	5.04

Validation Results Specificity

Of the six individual lots and one pooled lot evaluated, no significant interfering peaks were noted in blank human plasma samples (double blanks) or blanks containing only the IS (single blanks), for specificity evaluations using either SCIEX Triple Quad 6500 System (originally); QTRAP 6500+ or 7500 System instrumentation.

Quantitation unaffected for 2/3 replicates for 5/6 individual human plasma lots evaluated, using either SCIEX Triple Quad 6500 System (0.300 ng/mL LLOQ) or 7500 System (0.075 ng/mL alternative LLOQ) instrumentation (acceptable)

	SCIEX Triple Quad 6500 System Fortified Specificity Data						
	SPF 1	SPF 2	SPF 3	SPF 4	SPF 6		
	(ng/mL)	(ng/mL)	(ng/mL)	(ng/mL)	(ng/mL)	(ng/mL)	
	0.274	0.333	0.301	0.294	0.309	0.300	
	0.267	0.271	0.287	0.310	0.319	0.309	
	0.282	0.318	0.311	0.287	0.304	0.306	
Nominal Conc (ng/mL)	0.300	0.300	0.300	0.300	0.300	0.300	
Low Limit	0.225	0.225	0.225	0.225	0.225	0.225	
High Limit	0.375	0.375	0.375	0.375	0.375	0.375	

Validation Results Specificity

Of the six individual lots and one pooled lot evaluated, no significant interfering peaks were noted in blank human plasma samples (double blanks) or blanks containing only the IS (single blanks), for specificity evaluations using either SCIEX Triple Quad 6500 (originally); QTRAP 6500+ or 7500 System instrumentation.

Quantitation unaffected for 2/3 replicates for 5/6 individual human plasma lots evaluated, using either SCIEX Triple Quad 6500 (0.300 ng/mL LLOQ) or 7500 System (0.075 ng/mL alternative LLOQ) instrumentation (acceptable).

	SCIEX 7500 System Fortified Specificity Data							
	SPF 1	SPF 2	SPF 3	SPF 4	SPF 6			
	(ng/mL)	(ng/mL)	(ng/mL)	(ng/mL)	(ng/mL)	(ng/mL)		
	0.0766	NA	0.0586	0.0325	0.0854	0.0664		
	0.0814	0.0663	0.0630	0.0282	0.111	0.0653		
	0.0721	0.0841	0.0715	0.0326	0.0778	0.0717		
Nominal Conc (ng/mL)	0.0750	0.0750	0.0750	0.0750	0.0750	0.0750		
Low Limit	0.0563	0.0563	0.0563	0.0563	0.0563	0.0563		
High Limit	0.0938	0.0938	0.0938	0.0938	0.0938	0.0938		

Representative Chromatograms K₂EDTA human plasma blanks

SCIEX QTRAP 6500+ System

Ranibizumab Average CPS: 200

Ranibizumab Average CPS: 4000

SCIEX 7500 System

Representative Chromatograms 50 pg/mL ranibizumab K₂EDTA Human Plasma QC

Ranibizumab Average CPS: 400

SCIEX 7500 System

Representative Chromatograms 250 pg/mL ranibizumab K₂EDTA Human Plasma QC

Conclusions

- Both techniques validated according the 2018 FDA Bioanalytical Method Validation Guidance
 - SCIEX Triple Quad 6500 System: 0.3 to 100 ng/mL range (previously validated)
 - SCIEX 7500 System: 0.05 to 100 ng/mL range
- Markedly higher sensitivity achieved using SCIEX 7500 System
 - 6-fold lower LLOQ
 - 3.5x higher signal-to-noise
- Both methods available to quantitatively access plasma ranibizumab drug conc. in patient samples following IVT injection; with SCIEX 7500 System reaching more clinically relevant levels!
- Future perspectives and applications to additional bioanalytical methods
 - Reduced sample aliquot volume / injection volume
 - Especially helpful for pre-clinical and pediatric
 - Reduced reagents / reduced cost
 - Ability to achieve previously unattainable LLOQs

Select References

- Chiu, H., Tsai, I., Lu, Y., Lin, C., & Kuo, C. (2017). Development of an LC-MS/MS method with protein G purification strategy for quantifying bevacizumab in human plasma. Analytical and Bioanalytical Chemistry, 29 September 2017.
- Iwamoto N, Umino Y, Aoki C, Yamane N, Hamada A, Shimada T. Fully validated LCMS bioanalysis of bevacizumab in human plasma using nano-surface and molecular-orientation limited (nSMOL) proteolysis. DrugMetab Pharmacokinet. 2016;31(1):46–50.
- Takahashi, H., Nomura, Y., Nishida, J., Fujino, Y., Yanagi, Y., & Kawashima, H. (2016). Vascular Endothelial Growth Factor (VEGF) Concentration Is Underestimated by Enzyme-Linked Immunosorbent Assay in the Presence of Anti-VEGF Drugs. Investigative Ophthalmology & Visual Science, 57(2), 462-6.
- Xu, Q., Xu, Quanyun A., & Madden, Timothy L. (2012). LC-MS in drug bioanalysis. New York: Springer Science+Business Media.
- Avastin Website: https://www.avastin.com/patient/mcrc.html
- Genentech. (2004). Avastin: Highlights of Prescribing Information. Retrieved from: https://www.gene.com/download/pdf/avastin_prescribing.pdf
- Genentech. (2006). Lucentis: Highlights of Prescribing Information. Retrieved from: https://www.gene.com/download/pdf/lucentis_prescribing.pdf
- FDA (May 2001): Guidance for Industry: Bioanalytical Method Validation
- FDA (Sept 2013): Draft Guidance for Industry: Bioanalytical Method Validation
- Li, W., Zhang, Jie, & Tse, Francis L. S. (2013). Handbook of LC-MS Bioanalysis Best Practices, Experimental Protocols, and Regulations. Hoboken: Wiley.

Acknowledgements

- VCU School of Pharmacy, Department of Pharmaceutics
 - Dr. Matthew Halquist
- PPD LC-MS/MS Research and Development Group
 - Dr. Omnia Ismaiel
 - Bill Mylott
 - Dr. Moucun Yuan
- SCIEX
 - Dr. Ian Moore

Thank you! Questions?

https://www.nature.com/articles/nm1010-1107

Copyright ©2020 by PPD, Inc.

All rights reserved. This presentation, including the information contained herein and commentary associated herewith ("materials"), is provided as a service of PPD. These Materials, based on publicly available information as well as the knowledge and experience of PPD's employees, have been prepared solely for informational and educational purposes and should not be relied upon for professional advice. Any further use of these Materials requires the express written consent of PPD.

PU