

12th European Bioanalysis Forum Open Symposium

20-22 November 2019

Launchpad

Inspire: Biomarker Assay Validation – are we ready for launch?

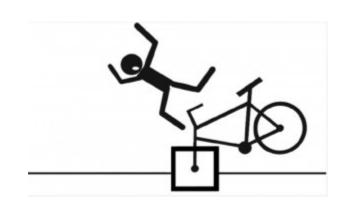
Biomarker Assay Validation? BRINGING CONTEXT OF USE INTO PRACTICE

John L Allinson FIBMS

Vice President – Biomarker Services Immunologix Laboratories

Scope

- Biomarkers in Perspective
- Assay performance and validation vs Same COU (for different biomarkers)
- Assay performance & validation vs Changing COU (for same biomarker)
- Conclusions


Setting the Scene: Biomarker History in Perspective!

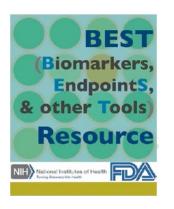
- Its not a new Science! Earliest recording 4000BC
- Written ID of "Biomarker", "COU" and "genetic" link 2nd Century AD
- "Validation" of several quantitative methods dates back to 1904
- International Validation recommendations in biomarker assays 1960's
- Guidance in Bioanalysis 2001

Important Messages......

1. Don't try to reinvent the wheel...

...or suffer the consequences...

2. If it ain't broke.....don't fix it


Points to Consider Document: Scientific and Regulatory Considerations for the Analytical Validation of Assays Used in the Qualification of Biomarkers in Biological Matrices

June 11, 2019

Biomarker Assay Collaborative Evidentiary Considerations
Writing Group, Critical Path Institute (C-Path)

https://c-path.org/wp-content/uploads/2019/06/evidconsid-whitepaper-analyticalsectionv2019.pdf

What exactly, is Context of Use?

- BEST resource 2016:
 - The Context of Use (COU) is "A statement that fully and clearly describes the way the medical product development tool is to be used and the medical product development related purpose of the use"
- Or, more succinctly...
 - Context of Use = The 'Purpose' in Fit-For-Purpose

Scope

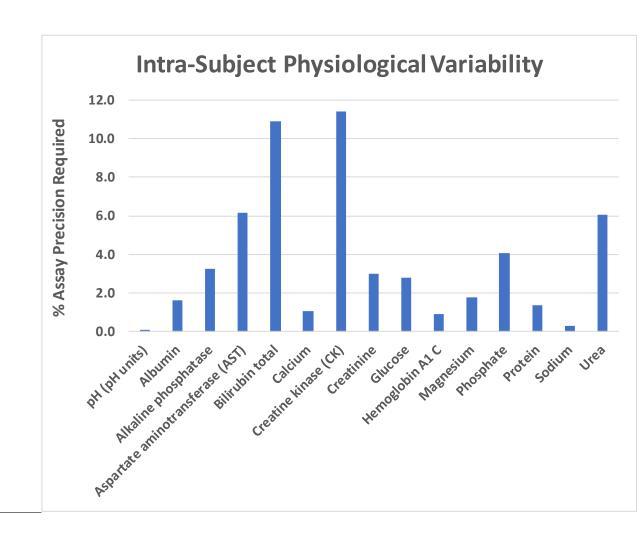
- Biomarkers in Perspective
- Assay performance and validation vs Same COU (for different biomarkers)
- Assay performance & validation vs Changing COU (for same biomarker)
- Conclusions

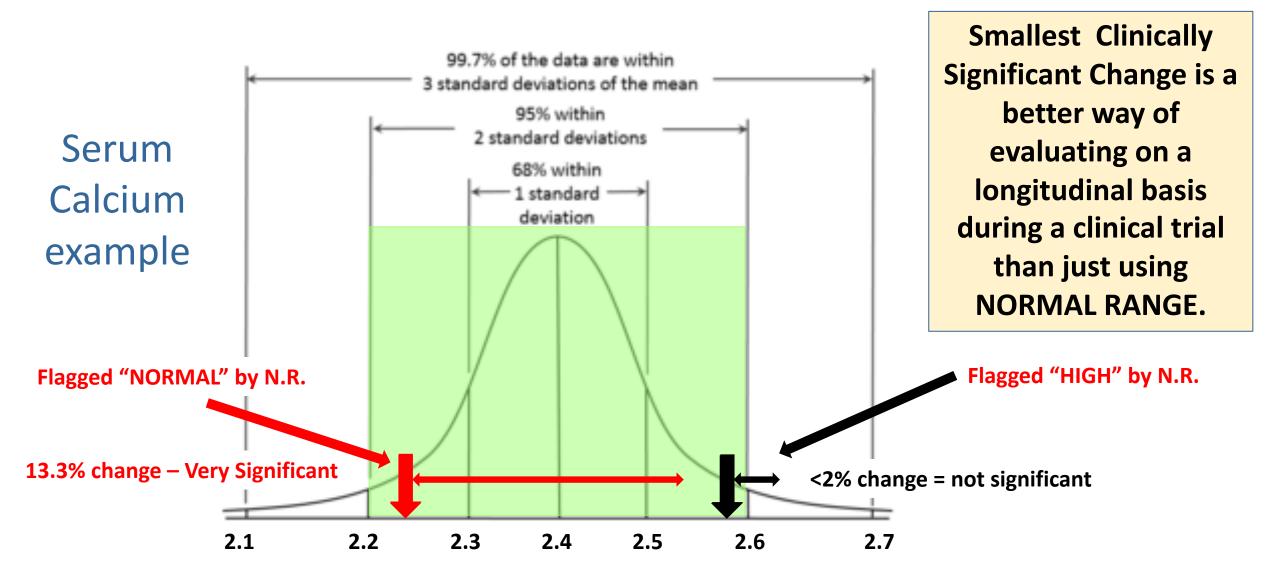
Context of Use

- PK assays, COU is always the same: fixed validation and acceptance criteria makes sense
- What about when the COU is the same for different Biomarker assays

Assay performance and validation vs Same COU (for different biomarkers)

COU = CAN WE DETECT CLINICALLY SIGNIFICANT CHANGE


FACTORS IMPACTING UPON ASSAY PERFORMANCE REQUIREMENTS & ACCEPTANCE:


PHYSIOLOGICAL VARIABILITY

Biomarker Assay Validation? Bringing Context of Use into practice

IMMUNOLOGIX LABORATORIES

Analyte	Physiological Variability		Assay Performance Requirements	
	Intra- Subject	Inter- Subject	Precision	Total Error
	CVI	CVg	l(%)	TE(%)
pH (pH units)	0.2		0.1	
Sodium	0.6	0.7	0.3	0.7
Calcium	2.1	2.5	1.1	2.6
Protein	2.8	4.7	1.4	3.6
Albumin	3.2	4.8	1.6	4.1
Hemoglobin A1 C	1.9	5.7	0.9	3.0
Magnesium	3.6	6.4	1.8	4.8
Glucose	5.6	7.5	2.8	7.0
Creatinine	6.0	14.7	3.0	8.9
Alkaline phosphatase	6.5	26.1	3.2	12.0
Phosphate	8.2	10.8	4.1	10.1
Urea	12.1	18.7	6.1	15.6
Aspartate aminotransferase (AST)	12.3	23.1	6.2	16.7
Bilirubin total	21.8	28.4	10.9	26.9
Creatine kinase (CK)	22.8	40.0	11.4	30.3

IMMUNOLOGIX LABORATORIES

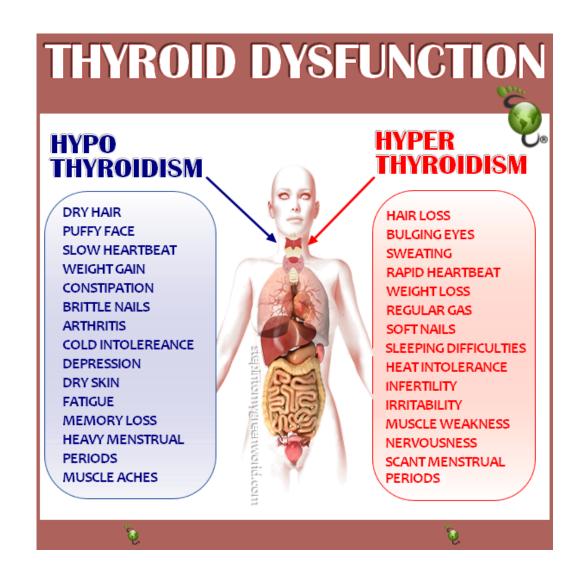
Serum IP-10 Serum IL-8 Serum TNFa Serum IP-10 Serum IL-8 Serum TNFa

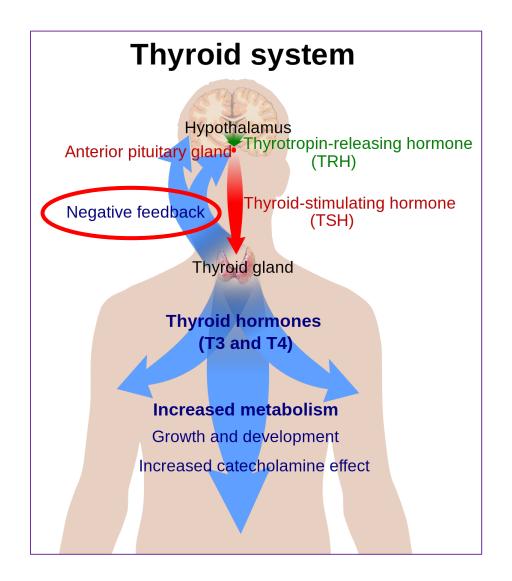
Research Biomarkers
Same COU (% reduction)
but vastly different responses to drug effect
= <u>Different assay performance characteristics</u>
& acceptance requirements

Scope

- Biomarkers in Perspective
- Assay performance and validation vs Same COU (for different biomarkers)
- Assay performance & validation vs Changing COU (for same biomarker)
- Conclusions

Context of Use

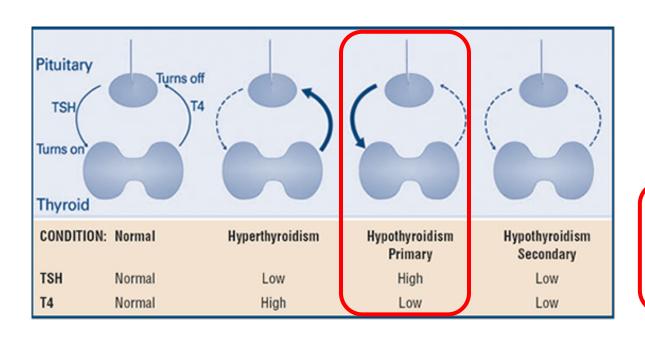

- PK assays, COU is always the same: fixed validation and acceptance criteria makes sense
- Biomarker assays


the SAME biomarker being measured.....different COU

The Evolution of Thyroid Stimulating Hormone Assays:

.....from a diagnostic used to identify hypothyroidism to

delivering Truly Personalised Healthcare/Therapy (achieved late 1980's)



Biomarker Assay Validation? Bringing Context of Use into practice

IMMUNOLOGIX LABORATORIES

DATE	DISEASE	TECHNIQUE / BM
1950's	Thyroid Disease	Radio-isotopic Assays (not RIA) – "PBI"

PBI (Protein-Bound Iodine) was really a "proxy" for Total Thyroid Hormones – Thyroxine (Tetra-iodothyronine (T4)) + Tri-iodothyronine (T3)

High T4 = Hyperthyroid
....but could not differentiate sufficiently
between NORMALS and HYPOthyroidism

Due to NEG feedback on pituitary thought investigating TSH may be more sensitive due to physiological response (↑TSH)

1960 – 1990 = SAME BIOMARKER (TSH), EVOLVING COU'S

1950's 1960's 1970's 1980-90's

Analytical Methods

PBI (T4+T3)
$$TSH - 1st Gen.$$
 (Sens = 1 – 2 mIU/L)

$$TSH - 2^{nd} Gen$$

(Sens = $0.1 - 0.2 mIU/L$) (3

TSH
$$- 3^{rd}$$
 Gen
(Sens = $0.01 - 0.02$ mIU/L)

Sandwich RIA & EIA
$$2 \times pAb's \rightarrow pAb + mAb$$

Changing Critical Reagents = ALL new versions re-validated for COU's already in use and new specific COU's

	•	validation. Dringing con	text of ose into practi
MMUNOLOGIX LABORA 1950's	1960's	1970's	1980-90's
	Analytical N		1300 303
PBI (T4+T3) Radio-isotopic	TSH – 1 st Gen. (Sens = 1 – 2 mIU/L) CPB	TSH -2^{nd} Gen (Sens = $0.1 - 0.2$ mIU/L) Sandwich RIA & EIA	TSH – 3 rd Gen (Sens = <mark>0.01 – 0.02</mark> mIU/L) FIA, new EIA, CIA
(not "RIA")	(pAb & radiolabel)	$2 \times pAb's \rightarrow pAb + mAb$	mAbs
	Context of Us	se (COU)	
?Hyper / Hypothyroidism	1) Replace T4/T3 as first-line test for Hypo (>5) (develop data for hyper by studying low concs.)	2) Differentiate normal & 1° hyperthyroid (<0.1) (continue to develop data at low concs for other possible COU's)	 3) Monitor T4 repl. Rx Guide ↑↓ dose or ↓↓ 4) Monitor suppressive Rx in thyroid cancer 5) Monitor for 2° <u>Hypopituitarism</u>
	Method Va	lidation	
	QC @ 5 & "HIGH" PARA, LOD, Stability LQC- IACV @ 1 & 2 ≤20%	QC @ 4 & 5 & "HIGH" PARA, LOD, Stability IACV @ 0.1 & 0.2 ≤20% Repl. Rx interference	QC @ 4 & 5 & "HIGH" PARA, LOD, Stability Add QC @ 0.1 IACV @ 0.01 & 0.02 ≤20% Repl. Rx interference Suppressive Rx interference

FOCUSED. EXPERIENCED. READY.

	Context o	of Use (COU)	
?Hyper / Hypothyroidism	1) Replace T4/T3 as first-line test for Hypo (develop data for hyper)	2) Differentiate normal & 1° hyperthyroid (continue to dev. data)	 3) Monitor T4 repl. Range Guide ↑↓ dose 4) Monitor suppressive Rx in thyroid cancer 5) Monitor for 2° Hypopituitarism
	COU - ?Drug	Development	
detect presence of Biomarker X	analytically detect qualitative changes in level of Biomarker X	analytically detect ≥2- fold changes in levels of Biomarker X	detect clinically meaningful changes in levels of Biomarker X
(yes/no)	(identify trends)	(relative quantification)	(clinically qualified)
	Validation - ?D	rug Development	

Fully validated to each specific C.O.U.

So: FFP and COU....

A picture is worth a thousand words......

....Courtesy of Lauren Stevenson

Biomarker Assay Validation? Bringing Context of Use into practice

IMMUNOLOGIX LABORATORIES

Fit-for-Purpose...

COU is specific...

...COU is the "P" in FFP

FOCUSED. EXPERIENCED. READY.

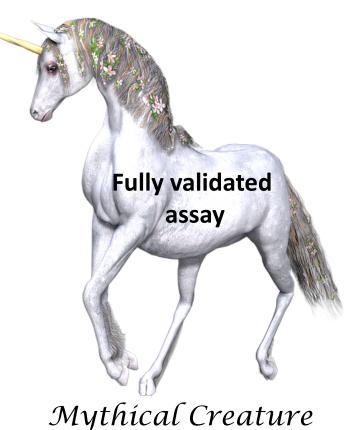
IMMUNOLOGIX LABORATORIES

"Fully Validated Assay"

Without Context of Use

- Bring the right ball to the game
- Biomarkers require sound science

Not divination


"Fully Validated Assay"

Questions

- Is a fully validated assay not fit-for-purpose?
- Is there an assumption that a 'fully validated assay' fits all purposes?

Without context of use... There is no such thing as a fully validated assay

Without context of use....a standalone 'full validation' is merely an analytical characterization of the assay, against which proposed contexts would later need to be applied

Scope

- Biomarkers in Perspective
- Assay performance and validation vs Same COU (for different biomarkers)
- Assay performance & validation vs Changing COU (for same biomarker)
- Conclusions

Context of Use is REQUIRED to "Fully" Validate your assay

- Context of Use = The 'Purpose' in Fit-For-Purpose
- Fit-for-Purpose ≠ lesser quality
- Fit-for-Purpose = exquisitely suited for the Purpose (COU)

- All biomarker assays should be (fully) validated for their COU,
 regardless of their application
 - 'Exploratory' is not a context of use
 - COU: Specifically, how will the data be used? Starts with a question...

With Context of Use: Fully validated to....

- COU 1: Fully validated to detect presence of Biomarker X (yes/no)
- COU 2: Fully validated to analytically detect qualitative changes in level of Biomarker X (identify trends)
- COU 3: Fully validated to analytically detect ≥2-fold changes in levels of Biomarker X (relative quantification)
- COU 4: Fully validated to detect clinically meaningful changes in levels of Biomarker X (clinically qualified)

The Challenge of Biomarker Assay Guidance

- Consider:
 - Why is there separate guidance for BMV (PK) and Immunogenicity?
 - Their contexts of use are different and specific
 - The assay validations are customized for their COUs
- So....do we need guidance for each biomarker assay COU?

Avoiding Misguided Guidance

- We need to think about this differently
- Prescriptive approaches with a priori acceptance criteria cannot address the needs of numerous and varied COUs

- Let science be our guidance
 - Start with questions
 - Demand and define COU
 - Build and properly characterize the assay
 - Justify its suitability

Fully validated for COU

Conclusions...

Demand COU: No context, no assay

- Without COU there is no such thing as a fully validated biomarker assay
 - Analytical characterization only
- Let science be our guidance considerations not criteria

Important messages....

- 1) Biomarker Science Its not new
- 2) Ensure good science be a Biomarker Scientist
- 3) Learn about true analytical QC
- 4) NEVER forget about the patients

References

- Fraser CG. (2001) Biological Variation: From Principles to Practice, C. G. Fraser, Publisher: Amer. Assoc. for Clinical Chemistry.
- Lee JW, Devanarayan V, Barrett YC, Weiner R, Allinson J, Fountain S, Keller S, Weinryb I, Green M, Duan L, Rogers JA, Millham R, O'Brien PJ, Sailstad J, Khan M, Ray C, Wagner JA. (2006) Fit-forpurpose method development and validation for successful biomarker measurement. Pharm Res. 23:312-28.
- Points to Consider Document: Scientific and Regulatory Considerations for the Analytical Validation of Assays Used in the Qualification of Biomarkers in Biological Matrices – Biomarker Assay Collaborative Evidentiary Considerations Writing Group, Critical Path Institute (C-Path), 2019
- Westgard Multirules QC https://www.westgard.com/mltirule.htm

Critical thought partners: Lauren Stevenson (ILX) & Devangi Mehta (ILX)

IF THERE'S NO SCIENTIFIC RATIONALE, IT'S NOT SCIENCE

DEMAND CONTEXT OF USE