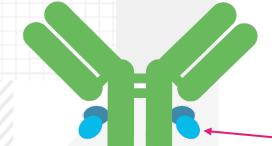


LC-MS/MS quantification of M254, a hyper-sialylated endogenous IgG biotherapeutic: analytical pitfalls and solutions


N. Teekamp, N. Washburn, K. Bronsema, R. Meccariello, F. Schalk,

R.G. Tiessen, H. Zeitz, T. van Iersel, N.C. van de Merbel

22 November 2019, EBF Open Symposium

M254 provides a more potent IVIg product

INTRODUCTION

Therapeutic immunoglobulins

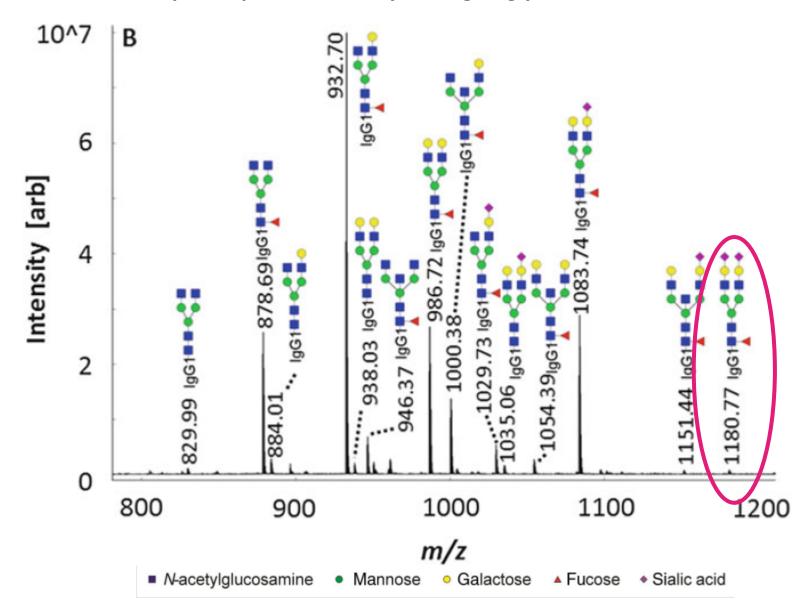
- IVIg consists of immunoglobulins from thousands of donors
- Intravenous immunoglobulin (IVIg) is used in a wide variety of immunodeficiency and autoimmune diseases to complement or modulate the immune system of the patient
- In certain autoimmune diseases such as ITP, IVIg is given at doses up to 2000 mg/kg

(70 kg means 140 grams of IVIg!)

 Enzymatic modification of the glycosylation of immunoglobulins in commercial IVIg

The addition of sialic acid groups has shown increased potency of the IVIg product in pre-clinical studies

- ✓ Possibly longer circulation by prevention of endocytosis and reduced proteolytic degradation
- ✓ Enhancement of immunosuppression


• M254 is in clinical development for the treatment of Immune Thrombocytopenic Purpura (ITP)

INTRODUCTION

Distribution of glycoforms of IgG

Example of qualitative analysis of IgG1 glycoforms

INTRODUCTION

M254 – What are we looking at?

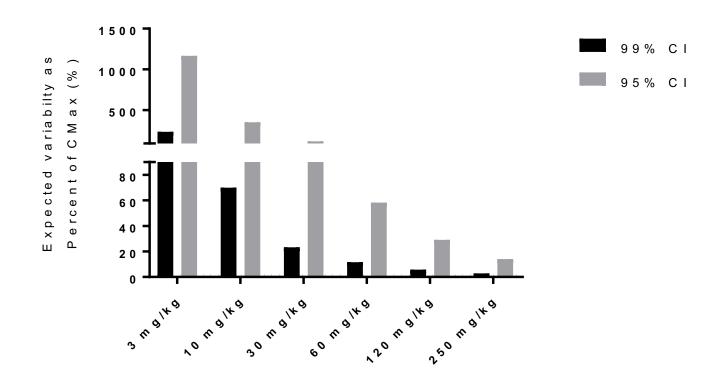
abundance (%) 60 Relative a 20 IVIg hsl Vlg Most abundant "glycan Most abundant pair" in M254 "glycan pair" in IVIg $F(ab')_2$ $F(ab')_2$ IVIg hsIVIg In-vitro enzymatic process • <<1% 80-90% Asn297 Asn297 tetrasialylated tetrasialylated ST6Gal1 B4GalT1 (99% sialylated) N-acetylglucosamine Galactose ▲ Fucose ◆ Sialic acid Mannose

Fc sialic acid content

100

IVIg (Intravenous immunoglobulin) is a polyclonal mixture of IgG highly purified

from pooled human plasma of at least 1000 donors.



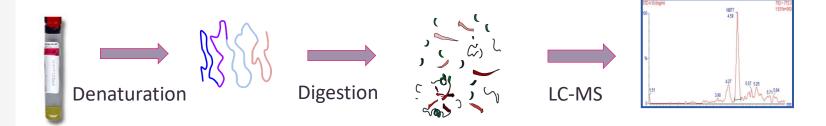
STANDARD APPROACH TO QUANTIFYING POLYCLONAL IG IS NOT SUITABLE FOR M254

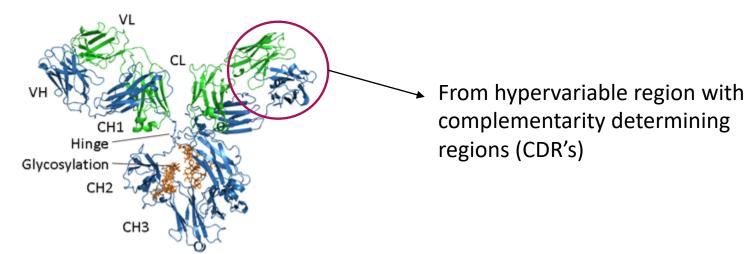
Analytical challenges of M254

- Total IgG ELISA is the standard analytical approach for quantitation of polyclonal IgG mixtures such as IVIg or M254
- Doses of M254 are substantially lower than usual IVIg doses
- The three lowest doses would have expected errors of more than 20% of C_{max} even at the 99% confidence interval (CI).
- The doses selected for the phase I normal healthy volunteer study exclude ELISA as the approach for determination of PK.

Expected total IgG ELISA variability relative to C M ax across doses of M 254

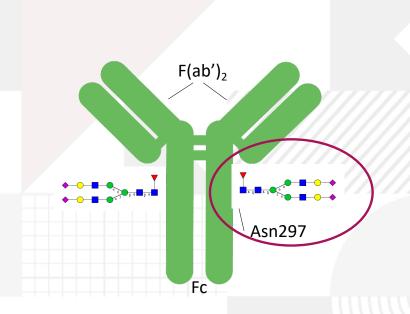
Theoretical Cmax calculated based on dose and 70mL/kg blood volume.

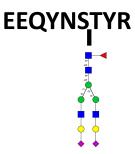

Expected variability for a given confidence interval was calculated based on 10mg/mL total IgG concentration.


ANALYTICAL CHALLENGES

IgG analysis by LC-MS/MS

Our approach for IgG analysis by LC-MS/MS:

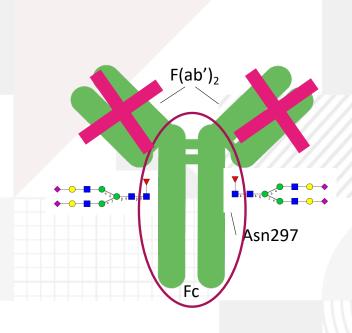

Typical approach for signature peptide selection for IgG analysis by LC-MS/MS:



ANALYTICAL CHALLENGES

The approach for M254

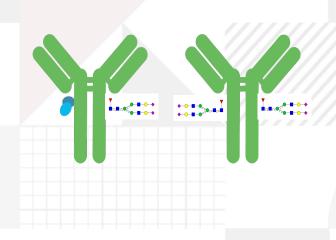
- High endogenous IgG concentrations precludes a (total) IgG assay
- Selectivity needed for the hyper-sialylated form
 - -Drug specific fragment → di-sialylated peptide



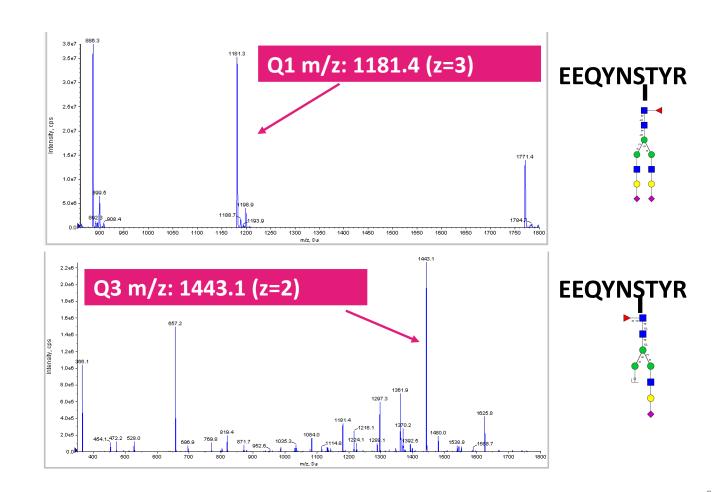
- Low and variable endogenous presence of di-sialylated peptide
- Relatively high expected analyte concentrations

THE M254 ANALYTICAL METHOD

Summary



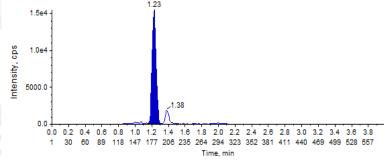
- Range: 5.00 5000 μg/mL Linear fit with 1/x² weighing
- Stable isotope labeled hyper-sialylated IgG1 Fc domain as internal standard
 → digested together with analyte
- Sample preparation by **proteolytic digestion by trypsin**
- 25 μL sample volume
- Column: Acquity CSH C18 2.1 mm x 100 mm, 1.7 μm particles
- MS system: Sciex triple quad 6500
- Standards prepared in **proxy matrix** because of endogenous presence
 - 2% BSA in phosphate buffered saline

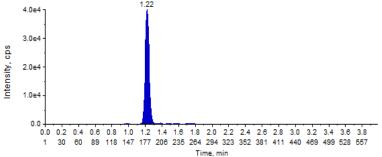


THE M254 ANALYTICAL METHOD

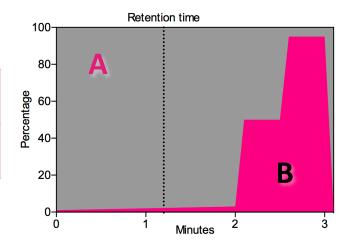
Mass Transitions

Quantitation of the di-sialylated N-glycopeptide EEQYNSTYR


THE M254 ANALYTICAL METHOD

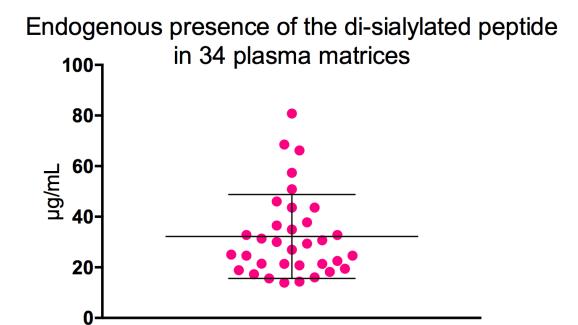

Chromatographic Method

LLOQ sample (5.00 µg/mL, proxy matrix) Q1: 1181.4 → Q3 1443.1



Plasma sample (20.7 µg/mL, endogenous)

Mobile Phase A	10% methanol in 0.1% formic acid in water
Mobile phase B	Acetonitrile



Screening of several plasma lots to select suitable matrices

VALIDATION PARAMETERS AND RESULTS

Validation Approach

- Matrix suitability was assessed with 34 lots of commercially available normal human plasma.
- There is a wide spread of endogenous levels of disiaylated IgG1 in normal human plasma.
- Higher levels could result from either higher overall levels of IgG1 or higher overall sialylation.

Validation Approach

- Experiments that were not performed due to method constraints
 - Selectivity
 - Extraction recovery
 - Matrix Effect

- Screening of several plasma lots to select suitable matrices
- <u>Preparation of validation samples</u>
 - LLOQ samples in proxy matrix
 - Endogenous concentration in a selected matrix (3-10x LLOQ)
 - Higher levels are spiked to the selected matrix
- Endogenous concentration were established in the A&P for use as QC and stability samples
 - 3 runs, 6 repeats
 - QC samples are not fresh!
- Determination of stabilities
 - In endogenous and spiked plasma samples
 - In proxy matrix
- Acceptance criteria: 20.0-25.0%
 - Digestion step

Summary

The following adaptations were necessary to validate with endogenous presence in plasma:

- Matrix variability experiment adapted (50.0 µg/mL added to endogenous plasma)
- A&P results used for establishment of endogenous concentrations to be used for stability assessments

Calibration range	5.00 – 5000 μg/mL			
Accuracy (Within-Run Bias)	Ranged from -8.4% to 6.0%			
Accuracy (Overall Bias)	Ranged from -6.5% to 2.1%			
Precision (Total CV)	Less or equal to 18.7%			
Robustness	174 study samples per run			
Dilution	2-fold dilution and quantification up to 10000 μg/mL is valid			
Matrix Variability/Selectivity	Within criteria			
Carry-over	< 20.0% of LLOQ response			
Reinjection Reproducibility	126 hours at +10°C in processed sample			
Autosampler Stability	118 hours at +10°C in processed sample			
Stability in Whole Blood	2 hours at 0°C and at room temperature			
Stabilities in plasma and proxy matrix				
Storage Stability	23 hours at room temperature; 183 days at -20°C and at -70°C.			
Freeze/thaw Stability	3 cycles at -20°C and at -70°C			

PRAHealthSciences Confidential Confidential

Accuracy and Precision, establishment

Validation levels:

- 5 μg/mL (LLOQ, in proxy matrix)
- Endogenous (to be established)
- Endogenous + 250 μg/mL
- Endogenous + 4000 μg/mL

Establishment of endogenous concentration at 18.9 μg/mL

F	Run	x1	x2	х3	x4 μg/mL	x5	x6	Mean	SD	CV (%)	Within Run Bias (%)
	1	18.3	18.5	18.1	17.1	17.5	18.6	18.0	0.6	3.2	-4.6
	2	18.0	19.1	18.0	19.6	31.8	21.2	21.3	5.3	25.0	12.6
	3	17.4	17.1	17.3	17.1	18.3	16.9	17.3	0.5	2.8	-8.4

Overall Statistics

Mean	18.9
SD	3.4
CV (%)	18.2

Incidental lower IS response

Accuracy and Precision, establishment

Validation levels:

- 5 μg/mL (LLOQ, in proxy matrix)
- Endogenous (to be established)
- Endogenous + 250 μg/mL
- Endogenous + 4000 μg/mL

- Establishment of endogenous concentration at 18.9 μg/mL in 3 runs
- 4th A&P run was performed

Run	x1	x2	х3	x4	x5	х6	Mean			Within Run
				μg/mL				SD	CV (%)	Bias (%)
1	18.3	18.5	18.1	17.1	17.5	18.6	18.0	0.6	3.2	-4.6
2	18.0	19.1	18.0	19.6	31.8	21.2	21.3	5.3	25.0	12.6
3	17.4	17.1	17.3	17.1	18.3	16.9	17.3	0.5	2.8	-8.4
4	17.4	17.3	18.6	18.8	17.1	16.8	17.7	0.8	4.6	-7.0

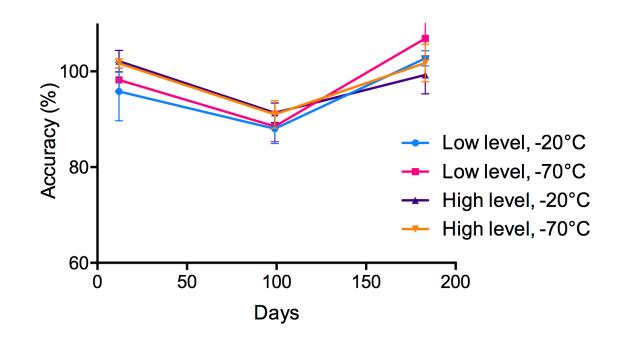
Overall Statistics

Mean	18.6
SD	3.0
CV (%)	16.1
Bias (%)	1.7
Accuracy (%)	98.3

After successful A&P, establishment of endogenous concentration is performed in a single run in 6-fold

Matrix Variability / Selectivity

- 6 independent matrix lots were spiked with 10x LLOQ (50.0 μg/mL)
- Unspiked and spiked sample were analyzed to determine the selectivity and matrix variability
- Absolute mean bias should be ≤20.0%


Matrix	Endogenous concentration (µg/mL)	Theoretical concentration (µg/mL)	Observed concentration (µg/mL)	<u>Bias</u> (%)
1	42.8	92.8	85.0	-8.3
2	37.9	87.9	87.7	-0.2
3	18.5	68.5	64.0	-6.7
4	18.4	68.4	62.0	-9.4
5	14.6	64.6	60.8	-5.8
6	24.4	74.4	71.6	-3.8
			Mean bias (%)	-5.7

Stability assessment

Long-term frozen stability in plasma

Nominal Concentration Low Level (endogenous)	18.9 μg/mL
Nominal Concentration High Level	4020 μg/mL

CONCLUSIONS

- LC-MS/MS analysis of the polyclonal IVIg product M254 is possible because of the specific glycoform
- The endogenous presence of the peptide required a biomarker-like approach for method development and validation
 - Consideration of different proxy matrices
 - Establishment of endogenous concentrations
 - Incorporation of the endogenous presence in the experiments (A&P, stability assessments and matrix variability)
- Successful application for the PK in the M254 clinical study

Kees Bronsema

Frank Schalk

Nico van de Merbel

PRA Health Sciences
Early Development Services
Clinical Research Facility

Renger Tiessen

Thijs van Iersel

Nathaniel Washburn

Robin Meccariello

Heidi Zeitz

