Anti-drug antibody analysis in non-clinical samples

- a simplified strategy offering sufficient support for interpretation of toxicology studies

Louise Jørgensen PhD, Immunogenicity Specialist

Non-Clinical and Clinical Assay Sciences Novo Nordisk A/S, Denmark

EBF Open Symposium, Barcelona 2019

Evaluation of non-clinical ADA analysis strategy

Purpose:

 To evaluate the level of ADA validation and ADA characterisation needed for nonclinical samples

What was evaluated:

- Regulatory guidelines
- Published recommendations in white papers etc.
- Historical data from various projects

Outcome:

Implementation of a more simple ADA strategy with sufficient support for interpretation of non-clinical studies

Guideline expectations for non-clinical ADA assays

- EMA 2017, Guideline on Immunogenicity assessment of therapeutic proteins:
 - Assays should be validated
 - Interference of therapeutic protein needs to be considered
- FDA 2019, Immunogenicity Testing of Therapeutic Protein Products —Developing and Validating Assays for Anti-Drug Antibody Detection:
 - Applies to clinical development, but "some concepts discussed are relevant to the design of ADA studies for non-clinical testing"
- ICH S6(R1) 2011, Preclinical Safety Evaluation of Biotechnology-derived Pharmaceuticals:
 - Antibody responses should be characterised (e.g. titer, number of responding animals, neutralising or non-neutralising) and correlated to any pharmacological or toxicological changes (PK/PD)
 - Assessment of neutralising potential warranted when ADAs are detected an there is no PD marker to demonstrate sustained activity

Assay cut point with 1% false positive rate ²

Determine sensitivity, reproducibility, susceptibility to matrix effects ²

Evaluate cut point on pre-dose samples and derive a study specific cut point if necessary ³

15 samples might be sufficient for validation cut point ²

Assay sensitivity of 500-1000 ng/ml is reasonable ¹

Published recommendations for non-clinical ADA assays

Determination of sensitivity in the presence of drug is expected ³

Confirmation of specificity is generally not needed 3+4

Results may be reported as positive/negative 4

Screening cut point at the 99.9th percentile is sufficient ⁴

Titration assay is not required ⁴

^{1:} Mire-Sluis et al. (2004). Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products. Journal of Immunological Methods. 2: Shankar et al. (2008). Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products. Journal of Pharmaceutical and Biomedical Analysis.

^{3:} Ponce et al (2009). Immunogenicity of biologically-derived therapeutics: Assessment and interpretation of nonclinical safety studies. Regulatory Toxicology and Pharmacology.

^{4:} Richards et al (2016). 2016 White Paper on recent issues in bioanalysis: focus on biomarker assay validation (BAV): (Part 3 – LBA, biomarkers and immunogenicity). Bioanalysis.

Considerations related to changing practice

Validation parameters

- Screening cut point (15x4 per species)
- Confirmatory cut point
- Cross reactivity cut point
- Titration cut point
- Sensitivity (2x)
- Drug interference (1-3 drug conc)
- Drug tolerance (2x)
- Haemolysis
- Epitope shielding
- Recovery
- Drift
- Precision
- QC range

Reproducible discrimination between positive and negative samples without tiered approach

ADA level is important for correlation to PK/PD – can assay signal replace titre

Better QC ranges/criteria to avoid unnecessary rejection of assays and sample re-analysis

Removal of the confirmation step - examples

			Study specific Cut Point			Validation Cut Point
		Screening 1.0% FPR + Confirmation		Screening 0.1% FPR	Screening 0.1% FPR	
Species	animals	sample type	≥ screening CP	Positive samples	Positive samples	Positive samples
rat	160	predose	9	0	3	0
		postdose	9	0	2	0
rat	96	predose	5	0	1	0
		postdose	4	0	3	0

Possible to avoid reporting outliers as ADA positive – more noise is not introduced

Removal of the confirmation step - examples

			St	tudy specific Cut Point		Validation Cut Point
			Screening 1.0% FPR + Confirmation		Screening 0.1% FPR	Screening 0.1% FPR
Species a	nimals	sample type	≥ screening CP	Positive samples	Positive samples	Positive samples
monkey	36	predose	0	0	0	0
		postdose	22	20	20	17
monkey	34	predose	1	0	1	0
		postdose	54	50	52	48

Lower incidence of ADA positive animals
Is that a problem for interpretation of non-clinical studies?

Example of unexpected changes in exposure where ADA data were used to support study

Use of assay signal as alternative to titration

- Assay signal or signal/noise ratio correlates to titre within the dynamic range of the assays
- Need for differentiation within maximum response?
- Many of ADA assays have a fair to large dynamic range where titration is not needed for interpretation of tox studies

Positive control antibody concentration (ng/ml)

Example of unexpected changes in exposure where ADA data were used to support study

ADA results:

Predose	Day 14	Day 112
2.7	60.4	92.7
2.9	2.8	11.1
2.4	10.5	92.5
3.2	61.2	89.6

Grey and bold: Positive for anti-drug antibodies, Results in %B/T.

- Simple ADA positive/negative status is not enough to explain PK changes
- But ADA assay signal levels can very often provide sufficient supportive information without titration
- Toxicological findings in the study suggested that lack of detectable exposure was caused by ADA interference in the bioanalysis assay

When ADA status and levels are not enough

ADA results:

Treatment	Predose	Day 15	Day 43
Recovery from day 15	3.0	3.4	6.2
Recovery from day 15	2.6	5.4	59.3
Treatment day 1-43	2.6	11.5	63.3
Treatment day 1-43	3.5	17.2	49.5
Treatment day 1-43	2.7	19.8	26.4

Grey and bold: Positive for anti-drug antibodies, Results in %B/T.

- All treated animals were exposed to comparable levels
- PD marker was necessary for evaluation of neutralising potential of ADAs

QC ranges for control of assay performance

- Recommended to use limits calculated with 1% failure rate on QCs at all levels ¹
- Not uncommon that these limits lead to rejection of assays where ADA results are considered suitable for support of non-clinical studies
- Implementation of new simple QC criteria/limits with sufficient control of assay performance:

QC level	QC neg	QC low	QC high
Purpose of QC	Sets the cut point (floating cut point)	Controls assay sensitivity	Controls the dynamic range
Simple acceptance criteria	No criteria	≥ cut point	Lower limit calculated with 0.1% failure rate

The simplified approach for non-clinical ADA

Former validation parameters

- Screening cut point (15x4 per species)
- Sensitivity (2x)
- Confirmatory cut point
- Cross reactivity cut point
- Titration cut point
- Drug interference (1-3 drug conc)
- Drug tolerance (2x)
- Haemolysis
- Epitope shielding
- Recovery
- Drift
- Precision
- QC ranges

New simple validation package

- Screening cut point (15x4 per species)
- Sensitivity (2x)

Drug tolerance (2x)

- Precision
- QCs with simple criteria

PowerPoint Presentation

Conclusion

- ADA results are support data required in non-clinical studies when unexpected PK/PD are observed
- ADA validation and assay control parameters were simplified with focus on what is needed for non-clinical studies
- ADA sample analysis can be performed simple and still offer sufficient support to the non-clinical studies

