

Assay Strategies And Technologies To Analyse Soluble Targets Of New Antibody Therapeutics

Florian Neff

Roche Innovation Center Munich, Pharma Research & Early Development pRED, Pharmaceutical Sciences, Large Molecule Bioanalytical R&D

EBF AUTUMN FOCUS WORKSHOP – Biomarker Assay Validation - 18-19 September 2019, Malaga, Spain

Bioanalytical Assays in Biologics Development The interplay between drug, target and ADAs

Analytes are not independent from each other

- $\$ Interactions have to be considered for
 - Drug exposure assessment
 - Immunogenicity testing
 - Target engagement
 - ... many more

Soluble Targets

- Soluble targets comprise
 - Ligands
 - Soluble receptors
 - Shedded receptor ectodomains
- Analysis of soluble targets is challenging because of assay interference by
 - Oligomerisation
 - Isotype variants
 - Ligand-receptor interaction
 - Drug

The Interplay between Soluble Target and Drug *PK/PD relationship of an antagonistic antibody and its target*

- Combined drug and soluble target analysis provides information on:
 - Drug exposure and clearance
 - Target engagement
 - Definition of dose and dosing frequency & many more
- In vivo and assay-related interactions have to be considered

Soluble Target Analysis for Antibody Therapeutics

- Differentiation between total, bound and free target desirable
- Challenge: in vivo situation (drug-target equilibrium) should kept unchanged by the assay

Soluble Target Assays for Antibody-Drugs A) Total target (drug-bound + free target)

- Both, detection (<E>) and capture (<W>) antibody bind to different epitopes than the therapeutic antibody (Drug, <N>)
- Therapeutic antibody (Drug, <N>) does not interfere with target quantification

Soluble Target Assays for Antibody-Drugs B) Free target

Stubenrauch et al., JPBA.102:459-67. (2015)

Detection or capture antibody bind to the same epitope as the drug (<N>), but with lower affinity, e.g.: with detection by <N> and capture by <W> as shown

Soluble Target Assays for Antibody-Drugs

Assessment of drug influence is essential to understand what is analyzed

Assessing of drug influence is essential for understanding your assay and what is analyzed

New Chance for Free Soluble Target Analysis Immunodepletion of drug-bound target

- Removal of drug-bound target advances analysis of free target (free AG1) using AG2 Specificity
- Bispecificity of the drug enables co-depletion as pretreatment w/o impact on the equilibrium between Drug and Target (AG1)

New Chance for Free Soluble Target Analysis Immunodepletion of drug-bound target

- The immunodepletion procedure removes the drugbound target. Free target remains detectable.
- This results in a free target measurement.

Stubenrauch et al., JPBA.102:459-67. (2015)

Challenges in Soluble Target Assay Development

- Physiological concentrations
- Biological variability
- Selecting the most representing reference material
- Assay acceptance criteria to be defined based on scientific judgement
- Clinical needs and the expected picture define the required assay range and LLOQ
- Assay may require to be adapted and re-validated according to the current clinical question
- "Fit-for-purpose" approach requires constant alignment of the clinical purpose with an in-depth scientific understanding of assay and biomarker biology
- → Each Soluble Target requires a unique assay and validation strategy for each clinical purpose

Technologies - "Purpose-driven" Used in Assay Development

Florian Neff, Roche, pRED, PS, LMBA - RICM at the EBF AUTUMN FOCUS WORKSHOP 2019 September 18-19, Malaga

Quanterix SP-X ULTRA Ultrasensitive Assays

Pro:

- Similar workflow to ELISA
- Multiplexing
- High sensitivity (Single digit fg/mL range)
- Moderate operator training level required

Con:

- May be susceptible to inaccurate working (Sensitive system Specific washer needed)
- Vendor-dependent spotting of capture reagents (batch to batch variability to be proven)

ELLA Simple Plex Assays

Pro:

- Relatively low sample consumption (2.5-25µL)
- Low operator training level required
- Low operator hands-on time
- Commercial assays for large number of analytes
 (>150)
- Good Correlation to Luminex / Simoa data

Con:

- Moderate Sensitivity (LLOQ IL-6 : 0.82pg/ml)
- Limited options for in-house assay development
- Vendor-dependent coating of capture reagents

Simoa[™] (Single Molecule Arrays) HD-1 Analyzer of Quanterix

Pro:

- High sensitivity (two digit fg/mL range)
- Highly automated system
- Robust second generation instruments

Con:

- High instrument costs
- Highly trained operator needed (assay development)

Evaluating Technology Performance Parameter

Example: Ophthalmology

Technology Selection Case 1 : Quantification of IL-6, based on available Kits

Technology	Sensitivity (pg/mL)	Sample consumptionf or duplicate (Dilution)	Assay Transfer
ELISA	0.78	40µL (1:5)	++
Quanterix SP-X	0.2	25 μL (1:4)	+
ELLA	1.64	25 µL (1:2)	+++
Luminex	19.2	100 µL (1:2)	++
Luminex + Curiox	19.2	10 µL (1:2)	-
Simoa HD-1	0.022	32.5 µL (1:4)	+
Singulex	0.01	$200 \ \mu L \ (neat)$	-
Pro Quantum	0.064	$10 \ \mu L$ (neat)	_*

* - Limited experience

→ Testing of kits with study samples in presence of drug shows the suitability for measurement of free target.

Goal:

Quantification of free sol. IL-6

in Serum samples

Available Volume : 500µL

Assay Transfer

Required sensitivity : 0.5 pg/mL

Decision : SP-X / Simoa HD-1

Open question : Free or Total Assay ?

Technology Selection based on Sensitivity Analysis of individual samples in comparison

Technology 1

Technology 2

Technology Selection Case 2 : Quantification of Ang2, based on available Kits

Technology	Sensitivity (pg/mL)	Sample consumption (Dilution)	Assay Transfer
ELISA	1175	40µL (1:5)	++
Quanterix SP-X			+
ELLA	32	25 µL (1:2)	+++
Luminex	360	50 µL (1:2)	++
Luminex + Curiox	360	5 µL (1:2)	-
Simoa HD-1	4.35	15μL (1:8.7)	+
Singulex	-		-
Pro Quantum	-		_*

Goal : Quantification of free sol. Ang2 in Aqueous humor samples

Available Volume : 20µL

Required sensitivity : 5 pg/mL

Decision : Simoa HD-1

Open question : Free or Total Assay ?

➔ If no free assay is found, a new homebrew assay must be developed also influencing the choice of technology.

Bioanalysis of Soluble Targets of New Antibody Therapeutics Conclusions

Sol. Target

Understand your drug and targets to develop assay strategies that result in relevant data

- Individual assay strategies reflecting the biological and clinical context are key for state-of-the-art analysis of **Soluble Targets**
- Novel antibody therapeutics require purpose-driven technology assessments

Doing now what patients need next