

Pitfalls in ADA Analysis Workarounds for Clinical Meaningful Immunogenicity Assessment

Thomas Emrich

Pharma Research and Early Development, Pharmaceutical Sciences, DMPK and Bioanalytical R&D Roche Innovation Center Munich

EBF Focus Workshop – Immunogenicity September 27/28, 2016, Lisbon

Immunogenicity - Pitfalls in ADA Analysis

- Analytes are not independent from each other
- Interactions have to be considered for immunogenicity assessment

Clinical consequences

Safety

- Hypersensitivity / Anaphylaxis
- Depletion of endogenous proteins (e.g. Epo)

Efficacy

- Reduced/increased exposure
- Diminished/loss of efficacy

Roche

Immunogenicity testing by ligand binding assay

Drug interference

Analytical consequence

 Drug-ADA-Interaction can result in <u>false-</u> <u>negative</u> ADA testing result

Roche

Immunogenicity testing by ligand binding assay

Drug interference

Fluorescent detection

- 1. Adequate analytical sensitivity for free ADA detection
- 2. Influencing the equilibrium towards free ADA
- 3. Dissociation of ADA-drug complexes by sample pre-treatment
- 4. Detection of ADA-drug complexes

Stubenrauch et al., (2012): Analytical Biochemistry 430, 193-199 Wessels et al., (2016); Bioanalysis 8, 2135-2145

5. ADA enrichment/purification

Analytical sensitivity of ADA detection mAb < A > ADA Immunoassay - Assay platforms

Drug concentration [µg/mL]

- Sensitive detection of ADAs with optimized immunoassays
 - e.g.
 - <2.5 ng/mL ADA in the absence of drug
 - 500 ng/mL ADA in the presence of 100 µg/mL drug
- Minor impact of platform observed with optimized ADA immunoassays

Shifting the equilibrium to improve drug tolerance $mAb < B > ADA\ ELISA - Impact\ of\ incubation\ time$

Prolonged incubation time improves overall sensitivity and drug tolerance

e.g.

8 vs. 16 ng/mL ADA in the absence of drug

32 vs. 250 ng/mL ADA in the presence of drug

Shifting the equilibrium to improve drug tolerance

ADA characteristics - ADA's behave differently

		_					m	Ah-		once	on	tratic	n fu	a/ml	1			
								AUS		Olice	CIII	uauc	ni լµ	9/IIIL	-1			
			_	_														
			0.0	0.5	1.0	2.5	5.0	10	20	40		0.0	0.5	1.0	2.5	5.0	10	20
	1	750	+	+	+	+	+	+	+	+		+	+	-	-	-	-	-
		500	+	+	+	+	+	+	+	-		+	-	-	-	-	-	-
		380	+	+	+	+	+	+	-	-		+	-	-	-	-	-	-
1 h		250	+	+	+	+	+	-	-	-		+	-	-	-	-	-	-
	\mathbf{E}	190	+	+	+	+	-	-	-	-		+	-	-	-	-	-	-
	6	125	+	-	-	-	-	-	-	-		+	-	-	-	-	-	-
	آڪ ِ	62	+	-	-	-	-	-	-	-		+	-	-	-	-	-	-
	_	0.0	-	-	-	-	-	-	-	-		-	-	-	-	•	-	-
	ō		•															
	#						20								0-	4		
						_	2 U								U-	•		
	<u>a</u>					4	20								0-			
	ntra	Tole	ranc	e fa	ctor		20 								0-	ľ		
	entra	Tole	ranc	e fa	ctor		Į Į								U-	,		
	centra	Tole	ranc	e fa	ctor	,	↓											
	oncentra	Tole	ranc	e fa	ctor	,	₩ ₩ ₩								2			
	concentration [ng/mL]	Tole	ranc	e fa	1.0	,	↓	10	20	40		0.0	0.5	1.0			10	20
							1 0	10	20	40		0.0	0.5	1.0	2	0	10	20
	PC concentra	750	0.0	0.5	1.0	2.5	10 5.0								2	0 5.0		
	PC	750 500	0.0	0.5	1.0	2.5	5.0	+	+	+		+	+	+	2.5 +	5.0	+	-
16 h	A PC	750	0.0	0.5	1.0	2.5	5.0 + +	+	+	+		+	+	+	2 2.5 + +	5.0	+	-
16 h	PC	750 500 380	0.0	0.5	1.0	2.5	5.0 + + +	+ + + +	+ + +	+ + -		+ + + +	+ + +	+ + + +	2 2.5 + + +	5.0 + + +	+ + + +	- - -
16 h	A PC	750 500 380 250	0.0 + + +	0.5 + + +	1.0	2.5	5.0 + + + + +	+ + + + +	+ + + + -	+ +		+ + + + +	+ + + + + +	+ + + + +	2.5 + + + +	5.0 + + + +	+ + + + -	- - -
16 h	A PC	750 500 380 250 190	0.0 + + + +	0.5 + + + +	1.0	2.5 + + + + + + + + + + + + + + + + + + +	5.0 + + + + + + + + + + + + + + + + + + +	+ + + + -	+ + +	+ +		+ + + + + + +	+ + + + + + +	+ + + + + + +	2.5	5.0 + + + +	+ + +	- - - -

Rabbit pAb<ID-mAb<C>> Positive control

Murine mAb<ID-mAb<C>> Positive control

40

40

Impact of ADA affinity to pre-treatment conditions pH dependent properties of ADA-drug complexes

- mAb<mAb<D>> high affinity
- mAb<mAb<D>> low affinity
- pAb<mAb<D>> / QC

Set-up

- mAb<D>/anti-<mAb<D> complex pre-bound on SPR chip
- Analysis of pH-dependent dissociation of drug–ADA complexes

1 h

15

min

- Reduction of specific ADA binding to mAb<D> strongly depends on characteristics and affinity of ADAs
- Dissociation of high-affinity-ADAdrug complexes in general requires harsh pH conditions are required (pH < 3.0)</p>

- Reduced recovery observed in acid pre-treated ADA PC samples spiked at QC concentrations
- Reduction of binding to drug varies with ADA affinity and time
- Potential underestimation (falsenegative) of real ADA-positive serum samples

Acid pre-treatment time

ADA Control	рН	3.5	3.0	2.5	
pAb <mab<d>> / QC</mab<d>		75	75	77	
mAb <mab<d>> high affir</mab<d>	nity	91	73	17	
mAb <mab<d>> low affini</mab<d>	ty	68	47	43	
pAb <mab<d>> / QC</mab<d>		70	82	85	
mAb <mab<d>> high affir</mab<d>	nity	93	84	58	
mAb <mab<d>> low affini</mab<d>	ty	68	49	44	

Recovery rel. to untreated samples [%]

- mAb<D> ADA ELISA
- Analysis of acidtreatment conditions on ADA recovery

Pros

Impact of acid pre-treatment to ADA integrity Pro's and con's of acid pre-treatment

Advantages of acid pre-treatment

- Improved drug tolerance
- Easy handling compared to other sample preparation procedures
- Easy to adapt to existing immunoassay platforms

Disadvantages of acid pre-treatment

- Impact on denaturation of human ADAs of study samples cannot be tested
- Impact on different ADA affinities and ADA isotypes (IgG_x, IgM, IgE, etc.) is not known
- Different and maybe species-dependent performance characteristics under pre-treatment conditions (rabbit ADA vs. human ADA)

Goal:

ADA testing strategy that mimimizes the risk of **false-negative results** due to high levels of residual drug (<u>unsufficient analytical sensitivity</u>) or due to ADA denaturation in test samples (<u>ADA inactivation</u>)

Con's

Assay optimization towards improved drug tolerance

Example: mAbADA assay: Evaluation of testing conditions

Immunogenicity testing by ligand binding assay Target interference

Case study: mAb<E>

- Drug: rec. humanized mAb
- Target: soluble cytokine
- SAD/MAD study in HV/patients

ADA Assay format: Bridging assay

Di-/oligomeric soluble target

Sample	ADA Screening	ADA Confirmation (+ Drug / mAb<>)		
ADA	Positive signal			
sTarget	Positive signal			
ADA + sTarget	Positive signal			

Immunogenicity testing by ligand binding assay

Target interference

Di-/oligomeric soluble target

- Presence of di-/oligomeric soluble target can result in false-positive ADA results in classical ADA bridging assays
- Development of a characterization reagent/assay allows discrimination between positive and false-positive ADA results

Sample	ADA Screening	ADA Confirmation (+ Drug/ mAb <e>)</e>	ADA Characterizatio n (+ mAb <e>M_2)</e>
ADA	Positive		⇔ No quenching
sTarget	Positive		
ADA + sTarget	Positive		⇔ No Quenching

Equilibrium shift to eliminate target interference Reduction of target interference by sample dilution

ADA Bridging Assay Bi-Drug starget Dig -Drug SA -MTP Anti-Dig HRP Reduction to 1% serum matrix content reveals increased specificity Risk mitigation strategy for false-positive ADA results due to target interference Balance between reduced sensitivity by sample dilution and benefit from increased drug tolerance/sensitivity due to complex dissociation See also: Staack et al. (2012): Bioanalysis; 4(4):381-95

Summary and Conclusions

- Testing for anti-drug antibodies to assess clinical immunogenicity requires deep understanding of interacting proteins of anti-drug antibodies
 - biologic conditions
 - sample/assay conditions

ADA Assay

- Sensitivity
- Drug/target interference/interaction
 - S

PK Assay

- Active/bindingcompetent drug
- ADA interaction

ADA Incidence

Clinical meaningful immunogenicity assessment

PD/Biomarker

- Safety marker
- Efficacy marker

Clinical impact

- Safety
- Impact on active exposure
- Efficacy

Roche

ADA-dependent Neutralization

ADA characterization vs. assessment of ADA effect on efficacy

ADA Characterization

Cell-based nAb Assay

- Full mode of action covered
- Only qualitative data
 - Obtained information:
 (At least) Some ADAs of the polyclonal immune response neutralize the drug effect
- "Selectivity" → sol. Ligand could also cause neutralization
- "Technical challenges": drug tolerance, sensitivity……

Assessment of ADA Effect on Efficacy

Ex-vivo Potency Assay

Schäfer, Challand, Schick, Bader, Hainzl, Heinig, Müller, Papadimitriou, Heinrich. *Bioanalysis*; 2015 (24):3063-72

Cell-based PK Assay

Hu, Gupta, Swanson, Zhuang.
J. Immunol. Methods 345(1–2), 70–79 (2009).
Wei, Grill, Heatherington, Swanson, Gupta
Journal of pharmaceutical and biomedical analysis; 2007;43(2):666-76

Active LBA PK Assay

Staack, Jordan, Viert, Schäfer, Papadimitriou, Heinrich. Bioanalysis: 2015 (24):3097-106

Relevant information:
Active drug exposure

Summary and Conclusions

- Testing for anti-drug antibodies to assess clinical immunogenicity requires deep understanding of interacting proteins of anti-drug antibodies
 - biologic conditions
 - sample/assay conditions
- Clinical meaningful investigation of immunogenicity is an integrated analysis of ADA impact on exposure, safety and is always an interplay between
 - sensitive and specific detection of ADAs under study conditions
 - measurement of pharmacological active drug
 - by clinical safety and efficacy markers

ADA Assay

- Sensitivity
- Drug/target interference/interaction
 - S

PK Assav

- Active/bindingcompetent drug
- ADA interaction

ADA Incidence

Clinical meaningful immunogenicity assessment

PD/Biomarker

- Safety marker
- Efficacy marker

Clinical impact

- Safety
- Impact on active exposure
- Efficacy

Acknowledgement

pRED Pharmaceutical Sciences, Large Molecule Bioanalytics at Roche Innovation Centers Munich and Basel

My team

Szilard Kamondi

Martin Schäfer & team

Corinne Petit-Frere

Gregor Jordan & team

Caroline Kreuzer

Gregor Lotz & team

Nicole Justies

Sabine Lohmann & team

Flena Fernandez

Cordula Jany & team

Robert Persson

Eginhard Schick and team

Apollon Papadimitriou

Julia Heinrich

Roland Staack

Kay Stubenrauch

Herbert Birnboeck

Doing now what patients need next