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The Challenge

Good quality reagents and supply Sensitivity: 0.96 ng/mL

First-class assay development —— =] N

High sensitivity technologies

Total Positive Rate: 14%
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WHAT IF

there was a different outlier detection approach?



Outline

= Literature and Guidances

= “Positive Rate” Definitions and Evaluation Scheme
= Qutlier Detection Approaches

= Data Assessment Package

= Results & Conclusions



Cut point Determination
Literature and Guidances
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> Approaches to establish cut points e,

= Average cut points (prediction interval) Pttt

* Confidence-level cut points (quantile lower bound)

» Robust parametric, (non-)parametric

= Mixture models



Cut point Determination
Literature and Guidances

= Significant amount of work on simulated data sets
= frequently with ideal (normal) distribution

* Less investigation on real data sets

* Qutlier detection rarely considered
= focus on analytical vs. biological outliers

» Shen et al. - Effect of outliers on the cut-point estimator is not investigated,
outlier identification and removal are not discussed either

= however, outlier removal can easily further inflate total/false positive rates



Positive Rates Qe
Definitions

Whole vs. negative population to calculate rates

= Whole population used in our calculations

TPR

= Total Positive Rate: percent of all screened (confirmed) positive samples

FPR

= False Positive Rate: percent of screened but not confirmed positive samples

CPR

* Confirmed Positive Rate: percent of both screened and confirmed positive samples



Data Evaluation Scheme

Analysis of Ouliee

50-100 detection in

pooled

individuals dataset

Normality
and
skewness
test

Decision
tree
approach



Outlier Detection Approaches

——
* Tukey’s boxplot (1.5*IQR) .
TN
= 3*IQR for extreme values /|
= Expected to work nicely when data are symmetric jﬂ%

| 3 * SD 09 0.95 1 1.05 11

« Estimate of SD significantly biased by the presence of outliers

= Robust alternative: 3*1.482*MAD (MAD: median absolute deviation)
less influenced by the presence of outliers

= ADJUSTED BOXPLOT

= Overcomes the problem of skewness / asymmetry

= (Can be applied to non-normal data sets

PNC 0.021 Cut Pointl Cut PointII 0.027 0.028 0.029 0.03




Available online at www.sciencedirect.com
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ELSEVIER Computational Statistics and Data Analysis 52 (2008) 5186-5201

Adjusted Boxplot

www.elsevier.com/locate/csda

An adjusted boxplot for skewed distributions

M. Hubert®*, E. Vandervieren®

A Department of Mathematics - Leuven Statistics Research Center, K.U.Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium
b Department of Mathematics & Computer Science, University of Antwerp, Middelheimlaan 1, B-2020 Antwerp, Belgium

Lack of industry experience in immunogenicity validations

Adjustment of the boxplot that includes a robust measure of skewness in the
determination of the whiskers

= Datasets can be processed in “R”
= Robustbase package: adjboxStats(x, coef = 1.5, a = -4, b = 3)

One fits all? Maybe not...

= generalized boxplot for severely skewed distributions (Bruffaerts et al., 2014)

= useful when some points are generated from another distribution



Data Assessment Package

Compounds, methods and matrices 21 validation data sets evaluated
= MADb, BsAb, PEG-Prot, Fab, Conj-Ab
* Bridging immunoassays * 10 clinical screening
= Mostly ELISA, ECL = & clinical confirmatory
» Healthy and disease validation population + a few clinical studies

S outlier detection methods tested
" Boxplot 1.5*IQR

* Boxplot 3*IQR * Parametric
= 3*SD » Parametric after log-transformation
= Robust alternative of 3*SD * Non-parametric

» Adjusted boxplot



Composite TPR in Clinical Screening Validations
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Sensitivity < 100 ng/mL
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ADJUSTED BOXPLOT: Superior performance with more favourable total positive rate



Composite TPR in Clinical Confirmatory Validations

15%
= Distribution of confirmatory

‘ ratios tends to be closer to
= ideal situation
S 10%
> | = Less difference among median
? TPRs
o
g 5% | = Adjusted boxplot performs

| nicely under less extreme

| conditions
0%

Boxplot 1.5*IQR Boxplot 3*IQR 3*SD Adjusted Boxplot



Composite FPR and CPR in Clinical Validations
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Non-Inferiority at the Other Extreme

* Human screening method (100 individuals measured three times)
= Bridging ELISA, photometric readout, PEG-protein, sensitivity<l10 pg/mL

= Almost normally distributed data set with very low variability

"= Adjusted boxplot shows very similar performance

Screening CPF 1.086 1.091 1.091
TPR 8.7% 8.0% 8.0%

Confirmatory CP 9.0% 10.3% 10.1%



Assessment in Clinical Studies 1

= Assessment of clinical baseline study samples (n=585)

TPR in Validation 19.0% 11.2% 5.0%

TPR in Study with

0 o o
Validation CPF 12.0% 1.5% 4.6%



Assessment in Clinical Studies 11

Compound RO003 (n=120) BP 1.5*IQR | BP 3*IQR -

TPR in Validation 16.0% 16.0% 12.0%
SCREENING TPR in Study with o o a
LAY Validation CPF 22.5% 20% 16.7%
Tplﬁ_g‘ills;;“gl)v;‘th 16.7% 13.3% 9.2%
TPR in Validation 10.0% 8.7% 6.7%
CONFIRMATORY
ASSAY TPR in Study with 9.29 8.3/, 5.0%

Validation CCP



Conclusions
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Doing now what patients need
next



