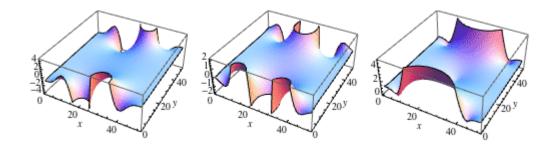


Evaluation of outlier detection methods for cut-point determination of immunogenicity screening and confirmatory assays

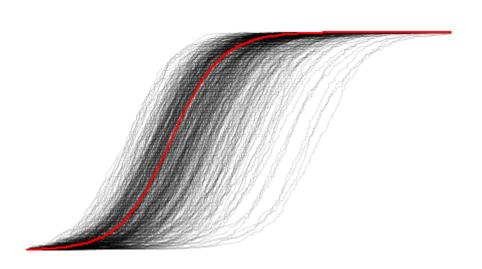
Szilard Kamondi and Eginhard Schick


Roche Pharma Research and Early Development, Pharmaceutical Sciences, Large Molecule Bioanalytical R&D, Roche Innovation Center Basel

European Bioanalysis Forum – Barcelona, 15 November 2017

Roche pRED

COMPLEX EQUATIONS

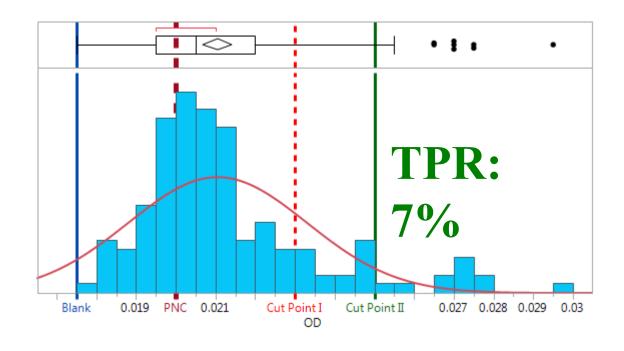

$$\int_0^\infty \frac{e^{-(p+x)y}}{\pi (p+x)} \sin \left(a \sqrt{x}\right) dx = -\sinh \left(a \sqrt{p}\right)$$

$$+\frac{e^{-a\sqrt{p}}}{2}\operatorname{erf}\left(\frac{a}{2\sqrt{y}}-\sqrt{py}\right)+\frac{e^{a\sqrt{p}}}{2}\operatorname{erf}\left(\frac{a}{2\sqrt{y}}+\sqrt{py}\right)$$

$$\int_0^\infty \frac{\sqrt{x} \ e^{-(p+x)y}}{\pi (p+x)} \cos \left(a \sqrt{x}\right) dx = \frac{e^{-\left[p y + a^2/(4 y)\right]}}{\sqrt{\pi y}} +$$

$$\sqrt{p} \left[-\cosh\left(a\sqrt{p}\right) - \frac{e^{-a\sqrt{p}}}{2} \operatorname{erf}\left(\frac{a}{2\sqrt{y}} - \sqrt{py}\right) + \frac{e^{a\sqrt{p}}}{2} \operatorname{erf}\left(\frac{a}{2\sqrt{y}} + \sqrt{py}\right) \right]$$

SIMULATIONS



The Challenge

- Good quality reagents and supply
- > First-class assay development
- > High sensitivity technologies

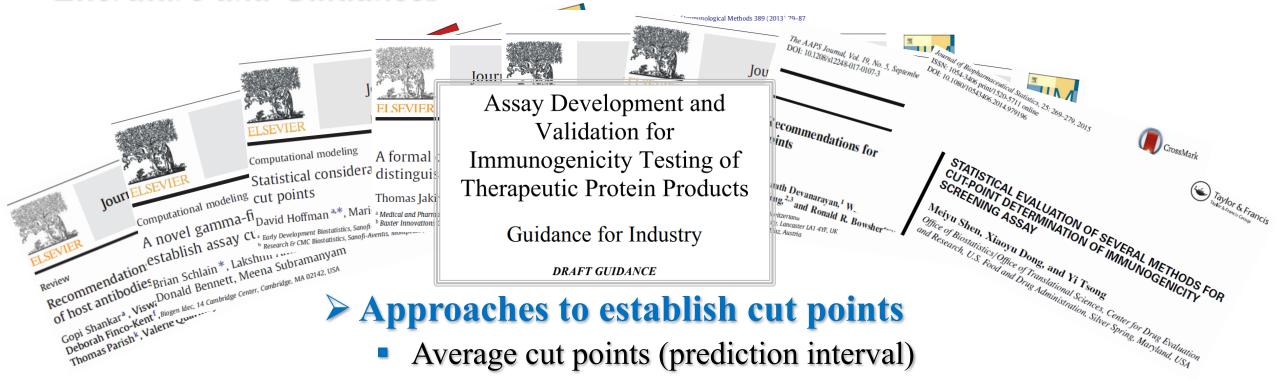
Total Positive Rate: 14%

Sensitivity: 0.96 ng/mL

WHAT IF

there was a different outlier detection approach?

Outline



- Literature and Guidances
- "Positive Rate" Definitions and Evaluation Scheme
- Outlier Detection Approaches
- Data Assessment Package
- Results & Conclusions

Cut point Determination

Literature and Guidances

- Confidence-level cut points (quantile lower bound)
- Robust parametric, (non-)parametric
- Mixture models

Cut point Determination

Literature and Guidances

- Significant amount of work on simulated data sets
 - frequently with ideal (normal) distribution
- Less investigation on real data sets
- Outlier detection rarely considered
 - focus on analytical vs. biological outliers
 - Shen et al. *Effect of outliers on the cut-point estimator is not investigated, outlier identification and removal are not discussed either*
 - however, outlier removal can easily further inflate total/false positive rates

Positive Rates

Definitions

Whole vs. negative population to calculate rates

Whole population used in our calculations

TPR

• Total Positive Rate: percent of all screened (confirmed) positive samples

FPR

• False Positive Rate: percent of screened but not confirmed positive samples

CPR

Confirmed Positive Rate: percent of both screened and confirmed positive samples

Data Evaluation Scheme

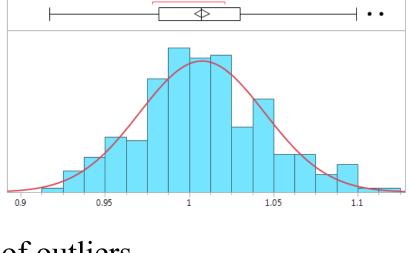
Analysis of 50-100 individuals

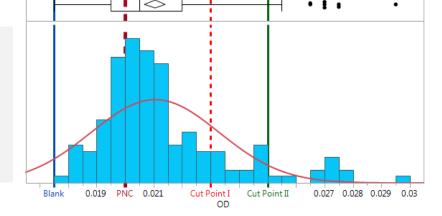
Outlier detection in pooled dataset

Normality and skewness test

Decision tree approach

Outlier Detection Approaches


- Tukey's boxplot (1.5*IQR)
 - 3*IQR for extreme values
 - Expected to work nicely when data are symmetric



- Estimate of SD significantly biased by the presence of outliers
- Robust alternative: 3*1.482*MAD (MAD: median absolute deviation)
 - less influenced by the presence of outliers

ADJUSTED BOXPLOT

- Overcomes the problem of skewness / asymmetry
- Can be applied to non-normal data sets

Adjusted Boxplot

Roche

- Lack of industry experience in immunogenicity validations
- Adjustment of the boxplot that <u>includes a robust measure of skewness</u> in the determination of the whiskers
- Datasets can be processed in "R"
 - Robustbase package: adjboxStats(x, coef = 1.5, a = -4, b = 3)
- One fits all? Maybe not…
 - generalized boxplot for severely skewed distributions (Bruffaerts et al., 2014)
 - useful when some points are generated from another distribution

Data Assessment Package

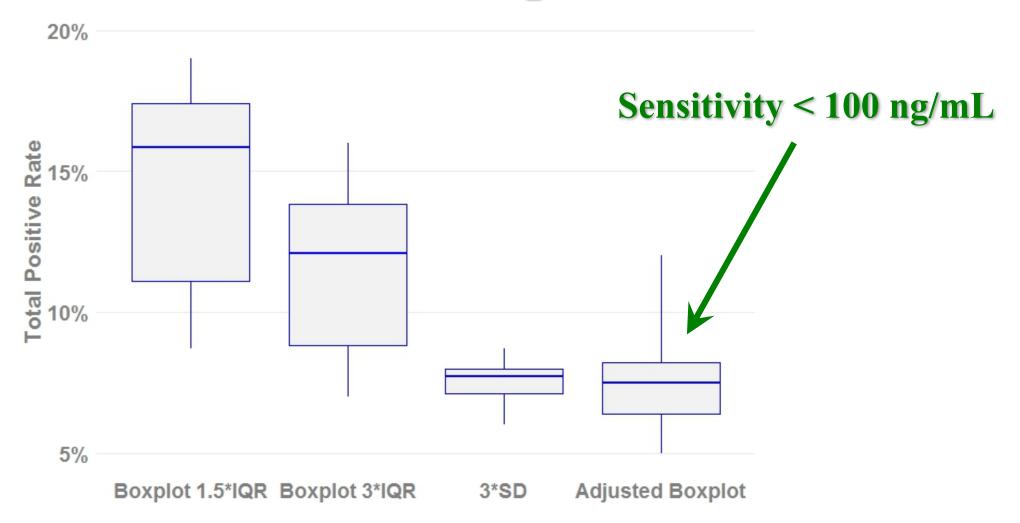
Compounds, methods and matrices

- MAb, BsAb, PEG-Prot, Fab, Conj-Ab
- Bridging immunoassays
- Mostly ELISA, ECL
- Healthy and disease validation population

5 outlier detection methods tested

- Boxplot 1.5*IQR
- Boxplot 3*IQR
- 3*SD
- Robust alternative of 3*SD
- Adjusted boxplot

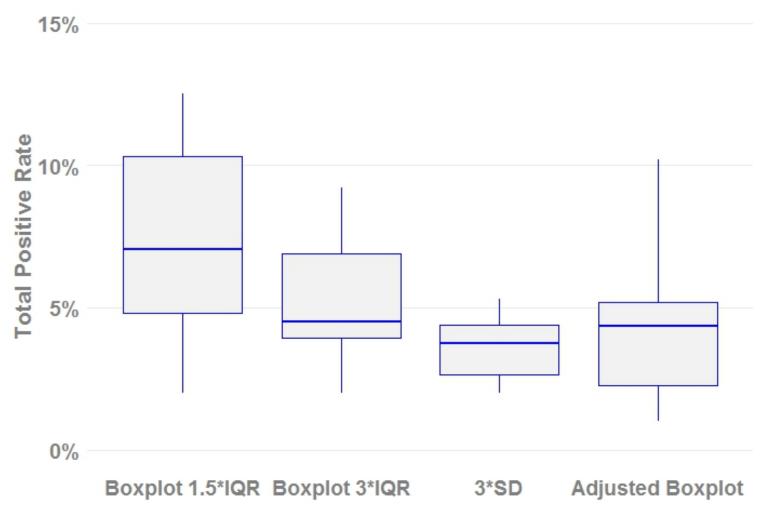
21 validation data sets evaluated


- 3 non-clinical screening
- 10 clinical screening
- 8 clinical confirmatory
- + a few clinical studies

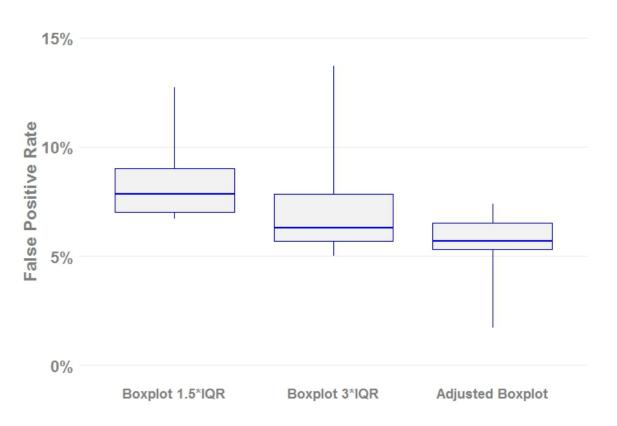
Threshold determination

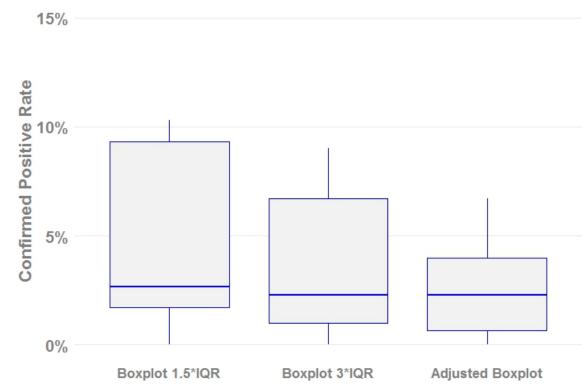
- Robust parametric
- Parametric
- Parametric after log-transformation
- Non-parametric

Composite TPR in Clinical Screening Validations



ADJUSTED BOXPLOT: Superior performance with more favourable total positive rate




- Distribution of confirmatory ratios tends to be closer to ideal situation
- Less difference among median TPRs
- Adjusted boxplot performs nicely under less extreme conditions

Composite data of all 8 clinical confirmatory validations

Composite FPR and CPR in Clinical Validations

Composite data of 8 clinical screening and confirmatory validations

Non-Inferiority at the Other Extreme

- Human screening method (100 individuals measured three times)
- Bridging ELISA, photometric readout, PEG-protein, sensitivity<10 pg/mL
- Almost normally distributed data set with very low variability
- Adjusted boxplot shows very similar performance

Compound RO001	BP 1.5*IQR	BP 3*IQR	ADJUSTED BP
Screening CPF	1.086	1.091	1.091
TPR	8.7%	8.0%	8.0%
Confirmatory CP	9.0%	10.3%	10.1%

Assessment in Clinical Studies I

Assessment of clinical baseline study samples (n=585)

Compound RO002	BP 1.5*IQR	BP 3*IQR	ADJUSTED BP
TPR in Validation	19.0%	11.2%	5.0%
TPR in Study with Validation CPF	12.0%	7.5%	4.6%

Assessment in Clinical Studies II

Compound RO003 (n=120)		BP 1.5*IQR	BP 3*IQR	ADJUSTED BP
SCREENING ASSAY	TPR in Validation	16.0%	16.0%	12.0%
	TPR in Study with Validation CPF	22.5%	20%	16.7%
	TPR in Study with In-study CPF	16.7%	13.3%	9.2%
CONFIRMATORY ASSAY	TPR in Validation	10.0%	8.7%	6.7%
	TPR in Study with Validation CCP	9.2%	8.3%	5.0%

10th EBF Open Meeting: 10 – A New Journey Begins, 15 November 2017

Conclusions

- ☐ There is a need for outlier detection approaches that can deal with skewed data sets
- ☐ Adjusted boxplot is a promising outlier detection method exhibiting this feature
- □ Close-to-ideal screening and confirmatory validation data sets showed non-inferior performance of adjusted boxplot in cases where asymmetry is low
- □ Superiority of adjusted boxplot was shown in screening data sets (validations and clinical studies) where skewed data sets are more common

Acknowledgement

PRED Large Molecule Bioanalytics Roche Innovation Centers Basel and Munich

Eginhard Schick

Corinne Petit-Frère

Caroline Kreuzer

Martin Schäfer

Gregor Jordan

Herbert Birnböck

LM Bioanalytical Managers

LM BAS Groups

Julia Heinrich

Lisa Benincosa

Thomas Singer

... and many more

Doing now what patients need next