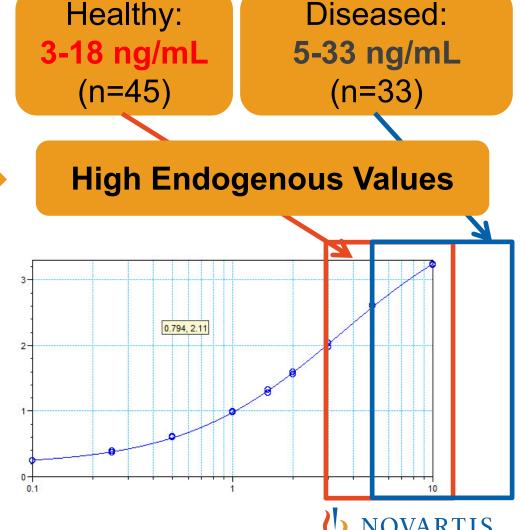


The use of parallelism to define biomarker assay parameters: a case study

Julie De Gagné EBF Open Symposium, Barcelona November 17, 2016



Measuring «protein x» in human serum

Assay kit recommended range: 0.06 – 6 ng/mL

Recombinant «protein x» stock: **200 ng/mL**

How do we define the assay range?

Does biomarker assay range need to be set based on spiked QCs as we do with PK assays?

How would you prepare your QCs?

- A. Prepare in human serum pool: dilute endogenous and/or spike to recombinant analyte at the desired levels.
- B. Prepare in surrogate matrix: spike recombinant analyte at the desired levels.
- C. Prepare in matrix depleted from analyte: spike recombinant analyte at the desired levels.
- D. Use 2 or 3 individual serum with different endogenous levels.

Agenda

- Publication Stevenson et al. 2014
- Why perform parallelism assessment?
- Using parallelism assessment to set assay parameters
- How validation was performed
- How sample analysis was performed

An interesting alternative approach to set assay parameters

Publication by Stevenson et al. 2014

Bioanalysis. 2014 Jan;6(2):185-98. doi: 10.4155/bio.13.292.

Parallelism: considerations for the development, validation and implementation of PK and biomarker ligand-binding assays.

Stevenson LF1, Purushothama S.

Author information

¹Biogen Idec, 14 Cambridge Center, Cambridge, MA 02142, USA.

Why performing parallelism for biomarker assays?

Publication by Stevenson et al. 2014

- To demonstrate that the (endogenous analyte) sample dilution-response curve is parallel to the standard concentration-response curve.
- To set the minimum required dilution (MRD)
- To set the LLOQ (estimation of assay sensitivity with respect to endogenous analyte)
- To assess selectivity

Using parallelism to set MRD

Principle from Stevenson and al. 2014

Tested: 14 ind. sera (Healthy/Diseased)

• Dilution (2 to 1000)

Limits

- ALQ = If O.D. value sera > O.D value highest STD
- BLQ = If O.D. value sera < O.D value lowest STD

Reported: dilution adjusted concentration

- Adjusted result = Mean result x Dilution factor
- MRD at which all individual samples measures in assay range and multiple dilutions beyond demonstrate acceptable accuracy

Using parallelism to set MRD

In healthy sera & diseased sera

										Diluti	on-a	adjus	ted	conc	entraf	tion (ng/m	ıL; %	nomi	inal)								
Sample Dilution			2		3		4		5		6		7		8		9		10		11		12		13		14	
1:2	5.81	(66)	5.85	(62)	4.19	(88)	4.78	(85)	2.59	(79)	2.13	(68)	2.21	(61)	ALQ		ALQ		ALQ		ALQ		ALQ		ALQ		5.99	(83)
1:4	7.62	(87)	8.14	(87)	4.42	(93)	5.54	(98)	3.17	(97)	2.82	(91)	3.41	(95)	ALQ		ALQ		17.42	(58)	ALQ		18.66	(70)	ALQ		7.12	(98)
1:8*	8.74	(100)*	9.39	(100)*	4.77	(100)*	5.64	(100)*	3.28	(100)*	3.11	(100)*	3.6	(100)*	35.69	(100)*	25.88	(100)*	* 30.11	(100)*	31.62	(100)*	26.55	(100)*	34.28	(100)*	7.23	(100)*
1:10	8.78	(100)	8.87	(94)	4.58	(96)	5.61	(99)	2.94	(90)	3.04	(98)	3.31	(92)	37.71	(106)	25.33	(98)	34.16	(113)	35.77	(113)	27.06	(102)	38.81	(113)	6.65	(92)
1:20	9.31	(107)	9.00	(96)	3.65	(77)	4.83	(86)	2.94	(90)	3.25	(105)	2.62	(73)	40.78	(114)	27.53	(106)	38.13	(127)	36.54	(116)	29.84	(112)	41.4	(121)	6.34	(88)
1:50	7.22	(83)	6.75	(72)	BLQ		3.33	(59)	BLQ		BLQ		BLQ		32.67	(92)	23.11	(90)	32.83	(109)	30.22	(96)	25.98	(98)	35.61	(104)	4.03	(56)
1:100	BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		25.52	(72)	16.79	(65)	27.75	(92)	22.83	(72)	21.14	(80)	27.91	(81)	BLQ	
1:200	BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		18.89	(53)	BLQ		19.94	(66)	15.41	(49)	15.61	(59)	19.57	(57)	BLQ	
1:500	BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		BLQ	
1:1000	BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		BLQ		BLQ	
Red =	Red = If %nominal <70% and %nominal >130% // 13 out																											

Red = If %nominal < 70% and %nominal >130% // 13 out

= healthy sera = diseased sera

*Indicates chosen minimum required dilution where all samples measure in assay range and multiple dilutions beyond the minimum required dilution yield accurate results

MRD Selected = 1:8

Using parallelism to set LLOQ

Principle from Stevenson et al. 2014

Tested: 14 ind. sera (Healthy/Diseased)

• Dilution (8 to 1000)

Limits

- ALQ = If O.D. value sera > O.D value highest STD
- BLQ = If O.D. value sera < O.D value lowest STD

Reported: measured concentration

- Measured Concentration (Mean result)
- Approach 1: LLOQ=highest conc. observed at dilution where all samples returned accurate results
- Approach 2: LLOQ=highest conc. among the lowest conc. from each sera that were accurate

Using parallelism to set LLOQ (Approach 1)

Common dilution method

Camania						Mea	sured con	centration (r	ng/mL)					
Sample Dilution	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1:8	1.09	1.17	0.60	0.71	0.41	0.39	0.45	4.46	3.24	3.76	3.95	3.32	4.29	0.90
1:10	0.88	0.89	0.46	0.56	0.29	0.30	0.33	3.77	2.53	3.42	3.58	2.71	3.00	0.67
1:20*	0.47*	0.45*	0.18*	0.24*	0.15*	0.16*	0.13*	2.04*	1.38*	1.91*	1.83*	1.49*	2.07*	0.32*
1:50	0.14	0.14	BLQ	0.07	BLQ	BLQ	BLQ	0.65	0.46	0.66	0.60	0.52	0.74	0.08
1:100	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	0.26	0.17	0.28	0.23	0.21	0.28	BLQ
1:200	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	0.09	BLQ	0.10	0.08	0.08	0.10	BLQ
1:500	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
1:1000	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
Red = If	Red = If %nominal <70% and %nominal >130%													
= healt	= healthy sera = diseased sera													

*Indicates the greatest dilution (1:20) at which all samples returned accurate results. Concentrations at MRD (1:8) were used as nominal. Bold: The highest concentration observed at that dilution is then set as the LLOQ

LLOQ = 2.07 ng/mL

Conclusion: this approach **not optimal** if different subject populations with different baseline levels

Using parallelism to set LLOQ (Approach 2)

Common concentration method

						Mea	sured cond	centration	(ng/mL)					
Sample Dilution	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1:8	1.09	1.17	0.60	0.71	0.41	0.39	0.45	4.46	3.24	3.76	3.95	3.32	4.29	0.90
1:10	0.88	0.89	0.46	0.56	0.29	0.30	0.33	3.77	2.53	3.42	3.58	2.71	3.88	0.67
1:20	0.47	0.45	0.18*	0.24*	0.15*	0.16*	0.13*	2.04	1.38	1.91	1.83	1.49	2.07	0.32*
1:50	0.14*	0.14*	BLQ	0.07	BLQ	BLQ	BLQ	0.65	0.46*	0.66	0.60	0.52	0.71	0.08
1:100	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	0.26*	0.17	0.28*	0.23*	0.21*	0.28*	BLQ
1:200	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	0.09	BLQ	0.10	0.08	0.08	0.10	BLQ
1:500	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
1:1000	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
	Red = If %nominal <70% and %nominal >130% = healthy sera = diseased sera													

*Indicates the greatest dilution for each individual sample that returned accurate results. Concentrations at MRD (1:8) were used as nominal. Bold: All samples measured accurately at or below 0.46 ng/mL regardless of dilution factor, so the common concentration that was accurate for all samples was 0.46 ng/mL

LLOQ Selected = 0.25 ng/mL

About Selectivity...

«The same or similar experiment may also be used as selectivity assessment, since a demonstration of parallelism across multiple individuals effectively demonstrates that the endogenous analyte is being selectively measured in the context of complex matrix components»

Conclusion: No spike-recovery experiment in individual sera was done but selectivity was assessed based on parallelism.

Selected parameters during Assay development

- Minimum Required Dilution: 8
- LLOQ: 0.25 ng/mL (2 ng/mL in 100% serum)
- Selectivity demonstrated using parallelism with 14 individual sera
- Calibrators in assay buffer: 0.1, 0.25, 0.5, 1, 1.5, 2, 3, 5, 10 ng/mL

QC Levels	Levels (100% matrix) (ng/mL)	Levels (MRD 8) (ng/mL)
QC1 (LLOQ)	2	0.25
QC2	6	0.75
QC3	10	1.25
QC4	20	2.50
QC5 (ULOQ)	40	5.00

How validation was performed

Validation Parameters	QCs in Surrogate Matrix (recombinant analyte)	QCs using human sera (endogenous analyte)
Precision & Accuracy	5 levels spiked (2, 6, 10, 20 & 40 ng/mL) in bulk in 100% surrogate -> frozen	2 human sera at conc. ~LLOQ after dilution (~0.25 ng/mL) 2 human sera diluted at MRD (100% serum aliquoted & frozen)
Parallelism	N.A.	4 human sera diluted (8x-128x)
Stability (short & 2 years long term)	2 levels spiked (6 & 20 ng/mL (Bulk + frozen)	2 human sera (100% serum, aliquoted + frozen)

[&]quot;Other parameters assessed as well: Specificity (interference), hook effect, ISR (study specimen)"

How sample analysis was performed

- Calibration Curve prepared in assay buffer
- Using only QCs (3 levels) prepared in surrogate matrix (bulk preparation + frozen)
- MRD applied to QCs in surrogate matrix and specimens

Conclusion

- The use of endogenous analyte facilitated assay development by setting assay parameters that were successfully validated
- → Assay for protein x was very robust during sample analysis and allowed quantification in the required range
- → Do not try to squeeze biomarker assay into PK principles

Thank you

