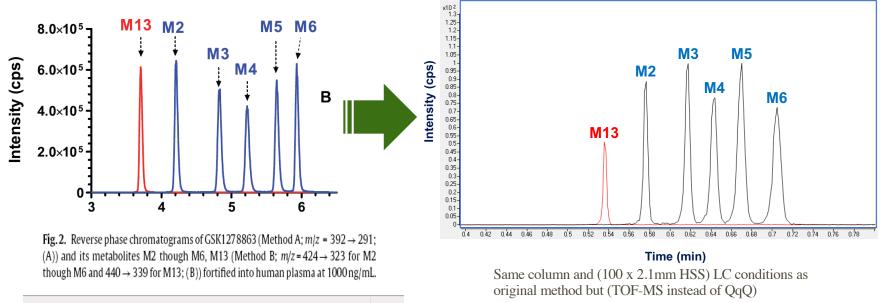


do more feel better live longer

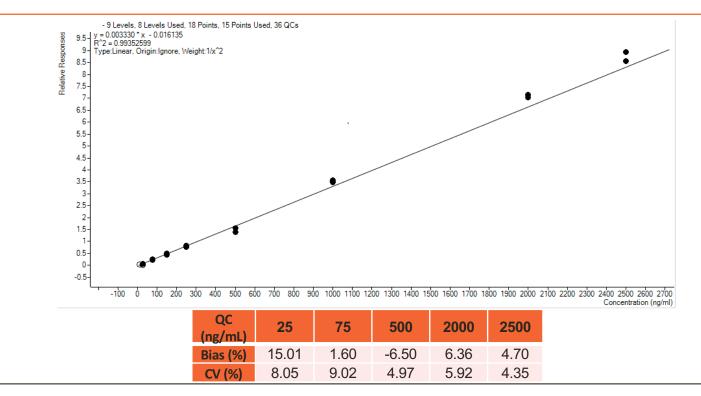

LC-MS Bioanalysis From minutes to seconds

Scott Summerfield

"Imagination is the only weapon in the war against reality." os

Lewis Carroll, Alice in Wonderland

Chromatogram from RapidSep separation of stereoisomers

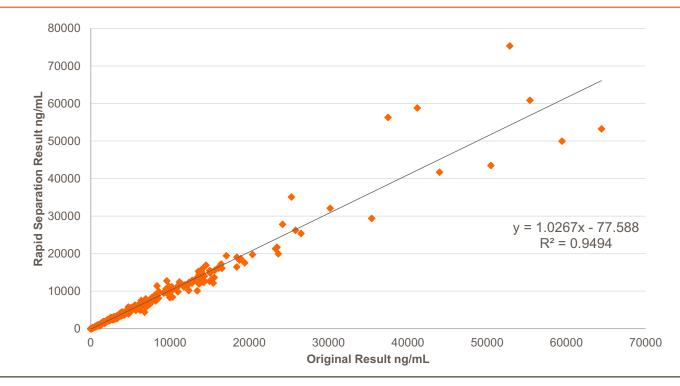


Licea-Perez, J Chromatogr B Analyt Technol Biomed Life Sci. (2016)

Results Faster LC-MS Method

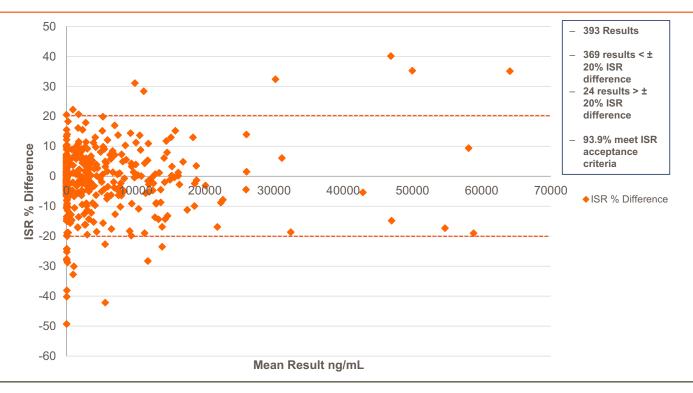
Comparable linearity and stats for all analytes

Rapid LC-MS setup


- Agilent 1290 with dual injector coupled to Agilent 6545 QTOF
- Minimal system dead volume
- Column connected directly into ion source in order to minimise post-column dispersion
- Initial evaluations
 performed on 10mm –
 100mm columns

Comparison of Results

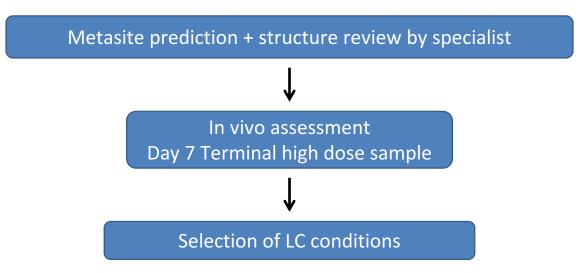
gsk



Incurred Sample Reproducibility

Non-GLP Safety Studies Supporting Candidate Selection

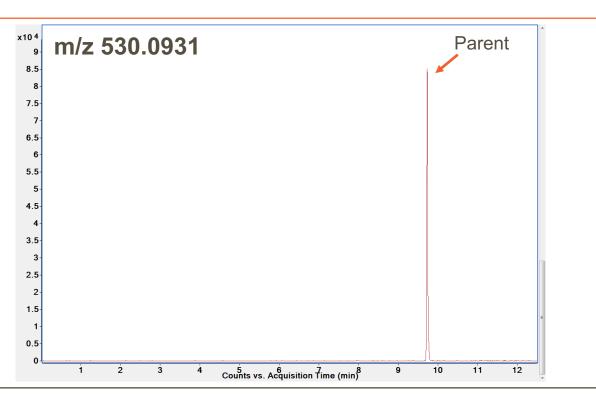
Matrix and Recovery


No Significant Differences observed between conventional and rapid LC-MS

Compound A	RapidSep Gradient			RapidSep Gradient			Conventional				Compound	RapidSep Gradient			RapidSep Gradient			Conventional		
	A			В			Chromatography				В	А			В			Chromatography		
	QC2	QC3	QC4	QC2	QC3	QC4	QC2	QC3	QC4		В	QC2	QC3	QC4	QC2	QC3	QC4	QC2	QC3	QC4
% Mean	58.6	62.3	69.4	63.4	63.4	69.8	58.4	63.5	66.7		% Mean	59.7	65.6	67.0	64.3	63.1	69.2	60.1	62.2	67.0
Recovery	58.0	02.5	09.4	05.4	05.4	09.8	J0.4	05.5	00.7		Recovery	39.7	05.0	07.0	04.5	05.1	09.2	00.1	02.2	07.5
%CV	5.5	2.2	1.6	4.9	3.5	2.4	3.6	2.9	1.8		%CV	6.4	3.2	4.5	5.4	1.3	4.6	5.5	4.7	3.8
																		-		
Mean											Mean									
Matrix	1.02	0.99	0.99	0.99	0.98	0.99	1.00	1.00	1.03		Matrix	0.90	0.87	0.90	0.98	0.96	0.94	1.01	0.98	0.98
Factor											Factor									
%CV	7.1	3.0	4.1	5.1	3.8	3.1	4.1	4.1	0.8		%CV	6.6	6.9	8.4	3.1	2.2	1.9	5.7	2.7	6.2

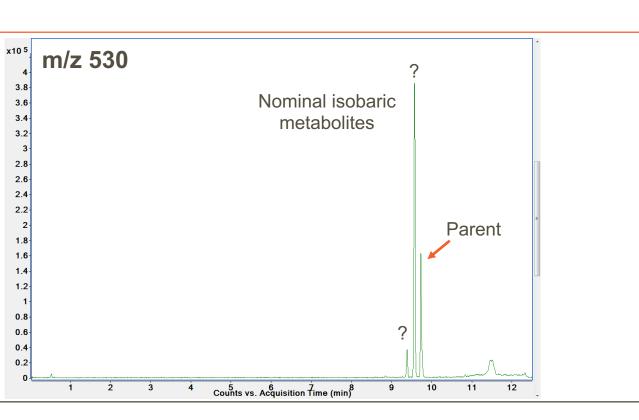
Screening Strategy

Assessment circulating isobaric interferences



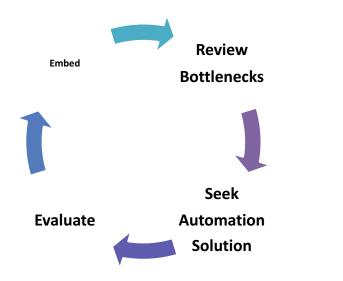
Presentation title

In Vivo Screening


LC-TOFMS

In Vivo Screening

LC-TOFMS



"Why, sometimes I've believed as many as six impossible things before breakfast." Lewis Carroll, Alice in Wonderland

 Companion automation to complement faster LC-MS/MS

LC-MS Bioanalysis From minutes to seconds

Why Bother With Faster Separations?

Fidelity of separation is a key target

- Sustainability
 - Reduced solvent consumption (per assay)
- Laboratory Footprint
 - Fewer (but higher end) MS systems supporting bioanalysis
 - Faster scans speeds to complement sensitivity
- MS utilisation and Automation
 - Greater internal capacity
 - Reduction of monotonous tasks and focus on data quality and data integrity
- Wider Adoption?
 - 2D separations

Acknowledgements

- Adam Hughes
- Matthew Barfield
- Bob Boughtflower
- Teresa Heslop
- Matthew Barfield
- Paul Abu-Rabie
- Rob Luxton
- Chris Benton
- Neil Spooner
- Lewis Couchman

