Further refinement and validation of the only ultrasensitive biomarker method for benzo[a]pyrene exposure by urinary metabolite

Raymond H. Farmen, PhD
Kirk Newland
Presentation flow

- Overview of biomarkers for cigarette smoking.
 - Modified Risk Tobacco Products: Heat-not-burn

- Polycyclic Aromatic Hydrocarbon Overview

- Initial Method Development and Validation

- Biomarker Qualification – initial assay
 - Lessons learned about biomarker statistics

- Method Development and Re-validation

- Biomarker Qualification – updated assay
 - Bioanalytical impact upon study design

- Conclusion
Examples of Tobacco Biomarkers

- Biomarkers of exposure:
 - Nicotine in plasma
 - Nicotine equivalents in urine
 - Polycyclic Aromatic Hydrocarbons (PAHs) in urine
 - Tobacco specific nitrosamines in urine
 - Aromatic amines in urine
 - Mercapturic acids in urine

- Biomarkers of effect:
 - 11-dehydro-thromboxane B2
 - Isoprostanes like 8-iso-PGF2 (type III)
 - sICAM
 - Biomarkers of oxidative stress
Heat-not-Burn Products

- When a cigarette burns at 600 - 900°C many chemical reactions occur
- Heat-not-burn products burn tobacco at <250°C and produce less chemical reactions

Images from www.pmiscience.com
Polycyclic Aromatic Hydrocarbons (PAH’s)

- PAH’s are tasty!
- Polycyclic aromatic hydrocarbons are formed through the incomplete combustion of organic material
- Tobacco smoke, and diet are primary sources of PAH exposure in humans
- Most tobacco related exposure studies performed today focus on the exposure of pyrene through a measure of total 1-hydroxypyrene in human urine to determine the overall PAH exposure.
- Pyrene exposure, while toxic at high levels, is not considered carcinogenic
- Benzo[a]pyrene is mutagenic and is a considered a primary carcinogen in cigarette smoke. It was the 1st carcinogen identified in cigarette smoke.
What is 3-OH Benzo[a]pyrene (3-OH-B[a]P)?

- Benzo[a]pyrene is a Polycyclic Aromatic Hydrocarbon (PAH) and is a biomarker of cigarette exposure
- Celerion has 27 validated urinary biomarkers of exposure and >5 biomarkers of effect
 - Analyzed >2,000,000 urinary biomarkers for tobacco exposure
- As a general rule, biomarker assays for tobacco exposure are much more complex than a typical bioanalytical drug assay
Benzo[a]pyrene metabolism

J. Carcinog. 2012, 11:1
Initial Assay Parameters for 3-OH-B[a]P

- Linear Range: 50.0 - 2000 fg/mL
- Control matrix: Canine urine
- Assay volume: 3.0 mL
- Sample processing:
 - Hydrolysis of glucuronide
 - Extraction
 - Derivatization
- Chromatography: UPLC with reversed phase retention
- LC-MS/MS Platform: Positive ions measured in MRM mode via SCIEX API 5000 or QTRAP® 5500
- Quality Control Design: 4 QC concentrations in human urine were measured. 2 measured basal level QCs were used for stability and precision.
Chromatograms:
Extracted 3-OH-B[a]P LLOQ & Blank

Structural Isomers of B[a]P

- 50 fg/ml LLOQ urine extract
- Control blank urine extract

- Deuterated Internal Standard

Approx. 6:1 S/N
Initial Assay 3-OH-B[a]P Validation Statistics

- Inter-day Precision: 3.6 - 10.9%
- Inter-day Accuracy: -3.6% - 0.2%
- Approximate recovery: 81%
- Intra-day Precision: 1.7 - 12.7%
- Intra-day Accuracy: -1.4 - 7.2%
- Average S/N at LLOQ: 6.7

In Matrix Stabilities
- Short-term Stability: 26 hr at ambient temperature
- Long-term Stability: 98 days at -20°C
- Freeze/thaw Stability: 6 cycles from ambient temp. to -20°C

Multi-lot Matrix Effect testing
- 9 of 10 lots quantitated within 15% of the expected concentration near the LLOQ (basal measurement plus supplement)
- 9 of 10 lots quantitated within 15% of the expected concentration near the high QC (basal measurement plus supplement)
3-OH-B[a]P Biomarker Qualification: Initial Assay Subject Results

- Average conc. from Smoker Urine ~240 fg/mL
 - Smokers used at least 10 conventional cigarettes per day
 - Spot collection of 1st morning void
 - No specific brand identified
 - Diluted samples could not be measured

- Average conc. from Light Smoker Urine ~25 to 50 fg/mL
 - Smokers used less than 10 conventional cigarettes per day
 - Spot collection of urine, not 1st morning void
 - No specific brand identified
 - Most samples could not be measured

- Average conc. from non-Smoker Urine < LLOQ
 - Spot collection of urine, not 1st morning void
 - No non-smoker samples could be measured
Fit-for-Purpose Validation
What is the purpose for each assay?

- **Routine Biomarkers**
- **Clinical Assays**
- **Drug PK Assays**

Biomarker Assays
- **Novel & routine Biomarkers**
- **Exposure**
- **Diverse purposes - PD, Efficacy & Safety Surrogacy**
- **Drug Development**

Is the value normal or abnormal?

- Response
 - Initial
 - Treated
3-OH-B[a]P Biomarker Qualification: Conclusion Initial Assay

- Sh!t – The assay isn’t sensitive enough.
 - If the concentration of 3-OH-B[a]P from light smokers < LLOQ then we probably wouldn’t see 3-OH-B[a]P from heat-not-burn product testing.

- What is the value of an LLOQ sample for statistical analysis?
 - Extremely Valuable Data
 - Don’t want to give it a value of “missing”
 - Assign it a value of ½ LLOQ??
 - Conclusion: lower the LLOQ

- The new SCIEX Triple Quad 6500 allows the ability to lower the LLOQ
Updated Assay Parameters for 3-OH-B[a]P

- Linear Range: 25.0 - 600 fg/mL
- Control matrix: Diluted human urine
- Assay volume: 2.7 mL
- Sample processing:
 - Hydrolysis of glucuronide
 - Extraction
 - Derivatization
- Chromatography: UPLC with reversed phase retention
- LC-MS/MS Platform: Positive ions measured in MRM mode via SCIEX Triple Quad 6500
- Quality Control Design: 4 QC concentrations in human urine were measured. 2 measured basal level QCs were used for stability and precision.
Chromatographic Comparison 3-OH-B[a]P: Initial versus Updated Assay

Initial assay: 50 fg/ml

LLOQ urine extract

S/N ~ 6:1

Updated assay: 25 fg/ml

Control blank urine extract

S/N ~ 12:1
Updated Assay 3-OH-B[a]P Validation Statistics

- Inter-day Precision: 4.5 - 15.8%
- Inter-day Accuracy: -2.8 - 1.6%
- Approximate recovery: 95%
- Intra-day Precision: 1.4 - 17.6%
- Intra-day Accuracy: -20.0 - 11.2%
- Average S/N at LLOQ: 12.4

In Matrix Stabilities
- Short-term Stability: 55 hours at ambient temperature
- Long-term Stability: 92 days at -20°C
- Freeze/thaw Stability: 6 cycles from ambient temp. to -20°C

Multi-lot Matrix Effect testing
- 9 of 10 lots quantitated within 15% of the expected concentration near the LLOQ (basal measurement plus supplement)
- 10 of 10 lots quantitated within 15% of the expected concentration near the high QC (basal measurement plus supplement)
3-OH-B[a]P Biomarker Qualification: Updated Assay Subject Results

- **Average conc. from Smoker Urine ~240 fg/mL**
 - Smokers used at least 10 conventional cigarettes per day
 - Spot collection of 1st morning void
 - No specific brand identified
 - All smoker samples could be measured. Most samples were between 5 and 10-fold of the LLOQ

- **Average conc. from Light Smoker Urine ~25 to 50 fg/mL**
 - Smokers used less than 10 conventional cigarettes per day
 - Spot collection of urine, not 1st morning void
 - No specific brand identified
 - All light smoker samples could be measured

- **Average conc. from non-Smoker Urine ~10 to 30 fg/mL**
 - Some non-smoker samples could be measured
Method Validation – Sensitivity
Cost Savings: Able to Dose Fewer Subjects

Number of Subjects required to demonstrate statistical significance

- 100 fewer subjects
- 60 fewer subjects
- 20 fewer subjects
- < LLOQ
- LLOQ

High LLOQ: 20% samples required to be statistical significant.
Appropriate LLOQ: 20 fewer subjects required.
With the improved sensitivity the method is now capable of measuring all smoker and light smoker urine concentrations of total 3-hydroxybenzo[a]pyrene

- Some non-smoker samples could also be measured

The improvement in sensitivity also improved the method reproducibility in the important range of 50 - 250 fg/mL where most clinical samples were measured

The updated assay with improved sensitivity has the ability to reduce the number of subjects in clinical studies
Thank you for your time

Special thanks to:
- Patrick Miller PhD
- Veniman Lapko PhD
- Ridha Nachi