Multiplexed Biomarker Methods
Platform and Assay considerations for appropriate analytical validation

John L Allinson FIBMS, Head of Biomarker Strategy, LGC

Science for a safer world
Multiplexed biomarker methods

Scope

- Introduction
- Multiplexed Platform Technology
- Pro’s & Con’s of Multiplexing
- Method Validation – special considerations
- Summary
Multiplexed biomarker methods

Multiplexing – what do we mean?

Multiple assays simultaneously in a single reaction vessel (ie micro-well/tube)

Illustration: Ray et al., 2005, JPBA
Multiplexed biomarker methods

Technology:

“Established”

- Luminex® L100/200™
- Luminex® FLEXMAP 3D®
- Luminex® MAGPIX®
- Mesoscale Discovery
- Aushon Cira™plex
- BD FACSARRAY

New “Emerging”

- Bioscale ViBE®
- Quanterix SiMOA
- Curiox DropArray™Plate
- Genalyte Maverick
- BIOSIMS Dynaxi
Multiplexed biomarker methods

• Why Multiplex?
 o Sample volume restrictions
 o Potential for more analytical data
 o Cost
Multiplexed biomarker methods

• Limitations? (Past / Present?)
 - In “qualitative” or research work – very good
 - For fully validated quantitative work – how many assays?
 - (may be platform dependent)
 - Cross-reactivity, Cross-talk, specificity, sensitivity, robustness
 - Often same analytical range for all methods
 - Degree of “Validation” by manufacturer
 - Availability of additional materials to enable method validations
 - Standardisation of Calibration Reference materials
 - Number and volume of QC’s
 - Lack of Biological Matrix data and QC’s
 - LOD vs LLOQ data
Multiplexed biomarker methods

8-plex panel

Analytical Range for all methods

Analyte - mean results observed

EGF GM-CSF IFN-γ IL-6 IL-8 IP-10 TNF-α VEGF

pg/mL

EBF, Barcelona, Nov 2015
Multiplexed biomarker methods

Sample Dilution vs Sensitivity

Dilution of these 4 samples is necessary to measure Analyte 1, but this will bring Analyte 2 levels below LLOQ.

These analytes shouldn’t be multiplexed if assay cannot be improved.
Multiplexed biomarker methods
Parallelism & MRD

Two methods with Different MRD’s

Parallelism - 6 matrix samples
Dilution adjusted analyte % Recovery vs MRD (1/8)

So – this is sample dilution requirements:

NOT due to analyte concentration but,
because of Matrix effects in the assays
Multiplexed biomarker methods

Multiplex assays Analytical Ranges

- IL-5
- IL-6
- IL-13
- TNFα
- INFγ

Analytical Ranges:
- Millipore
- Millipore HS
- R&D Systems
- MSD
- Randox

EBF, Barcelona, Nov 2015
Multiplexed biomarker methods

LOD's

- RANDOX
- MSD
- biorad xMAP
- Millipore xMAP
- Millipore xMAP HS
- R&D xMAP

<table>
<thead>
<tr>
<th>Protein</th>
<th>LOD (pg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-8</td>
<td>9.00</td>
</tr>
<tr>
<td>IL-6</td>
<td>10.00</td>
</tr>
<tr>
<td>IFNg</td>
<td>5.00</td>
</tr>
<tr>
<td>IL-10</td>
<td>6.00</td>
</tr>
<tr>
<td>TNFa</td>
<td>4.00</td>
</tr>
<tr>
<td>IL-1b</td>
<td>5.00</td>
</tr>
<tr>
<td>IL-2</td>
<td>10.00</td>
</tr>
</tbody>
</table>

EBF, Barcelona, Nov 2015
Multiplexed Biomarker Methods

Human HS Cytokine kit MFIs (1/y^2 weighted)

![Graph showing log MFI vs log pg/mL for IL-6, IL-8, TNF-a, and GM-CSF](image-url)
Multiplexed biomarker methods

VALIDATION - what do we test?

Total list of performance criteria includes……..

Accuracy………*will often be impossible to determine*

Precision

Sensitivity

Linearity

Parallelism
Mean different things to different scientists

Spiked Recovery

Dilutional Linearity

Specificity……….*to T/A + metabolites AND other endogenous molecules*

Analytical Range

Analyte Stability…..*completely different for biomarkers*

Standard and QC Stability

Reagent Stability

Whole Plate Imprecision

So – what’s special about Multiplexed assays?
Multiplexed biomarker methods

VALIDATION –
what additional precautions for Multiplexed Biomarker Methods?

These are often the same as for single assays but bring more complexity when they are challenges for Multiplexed assays:

- **Quantitation ranges and sensitivities**
 - matrix specific - check for hook effect (prozone)
 - sample dilutions – (ranges and sensitivities)
 - Appropriate for all biomarkers in panel and the clinical utility in the study?

- **Performance in sample matrix vs surrogate matrix**
 - always worse

- **Cross-talk?** (well-to-well or spot-to-spot “carryover”, “bleed-over”, or “leaching”)
 - Requires screening by spiking in one analyte at very high concentration

- **Selectivity?**
 - Check for each project – antibodies (RF, HAMA), TA, Mets., Concomitants, similar molecules

- **LOT-to-LOT variability**
Multiplexed biomarker methods

VALIDATION –
what additional precautions for Multiplexed Biomarker Methods?

• Matrix Parallelism:
 • Difficulty in obtaining matrix with single analytes of interest – much more difficult for multiple Biomarkers
 • Multiple samples will be required
 • May often be impossible to cover all analytes therefore……

• Spiked matrix dilutional linearity
 • Likely to be required in many cases
 • Requires obtaining additional and multiple calibration reference materials
 • Sometimes not available from kit manufacturer

• Biomarker Stability
 • Collection/storage etc will be dictated by the least stable.
 • However, availability of suitable matrix is the same problem here as for parallelism

• Precision & Accuracy
 • Each assay will potentially perform differently, therefore different acceptance criteria for each is appropriate – drive by clinical utility & statistical significance
Multiplexed biomarker methods

SUMMARY

• Multiplex assays can be powerful tools

• Their use (and the platforms to conduct them on) has grown in last 10 years

• These assays bring an increased complexity in terms of validation

• Assay robustness and degree of “validation” work conducted by the manufacturers have improved but can still vary a lot

• Commonly, the most difficult analytical challenges are:-
 • Analytical ranges
 • Sensitivity of each assay
 • Performance with different biological matrices

Finally – get the data interpretation right! (statistical analysis plan)
Multiplexed biomarker methods

White Paper

Recommendations for Use and Fit-for-Purpose Validation of Biomarker Multiplex Ligand Binding Assays in Drug Development

Darshana Jani, John Allinson, Flora Berisha, Kyra J. Cowan, Viswanath Devanarayan, Carol Gleason, Andreas Jeromin, Steve Keller, Masood U. Khan, Bill Nowatzke, Paul Rhyne, and Laurie Stephen

Received 18 May 2015; accepted 12 August 2015

Abstract. Multiplex ligand binding assays (LBAs) are increasingly being used to support many stages of drug development. The complexity of multiplex assays creates many unique challenges in comparison to single-plexed assays leading to various adjustments for validation and potentially during sample analysis to accommodate all of the analytes being measured. This often requires a compromise in decision making with respect to choosing final assay conditions and acceptance criteria of some key assay parameters, depending on the intended use of the assay. The critical parameters that are impacted due to the added challenges associated with multiplexing include the minimum required dilution (MRD), quality control samples that span the range of all analytes being measured, quantitative ranges which can be compromised for certain targets, achieving parallelism for all analytes of interest, cross-talk across assays, freeze-thaw stability across analytes, among many others. Thus, these challenges also increase the complexity of validating the performance of the assay for its intended use. This paper describes the challenges encountered with multiplex LBAs, discusses the underlying causes, and provides solutions to help overcome these challenges. Finally, we provide recommendations on how to perform a fit-for-purpose-based validation, emphasizing issues that are unique to multiplex kit assays.

KEY WORDS: biomarker; diagnostics; ligand binding assay; multiplex; validation.
Thank you for your attention!

John L Allinson FIBMS, Head of Biomarker Strategy, LGC

john.allinson@lgcgroup.com
Multiplexed biomarker methods

Results Data Interpretation…..

• Different methods perform differently

• Method specific acceptance criteria is appropriate…
 • drive by clinical utility & statistical significance

What impact can method performance have on data interpretation?

....2 case studies
Impact of Analytical/Biological Variability on biomarker evaluations

<table>
<thead>
<tr>
<th>Marker</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marker 1</td>
<td>56% inc.</td>
</tr>
<tr>
<td>Marker 2</td>
<td>24% dec.</td>
</tr>
<tr>
<td>Marker 3</td>
<td>80% inc.</td>
</tr>
<tr>
<td>Marker 4</td>
<td>45% inc.</td>
</tr>
<tr>
<td>Marker 5</td>
<td>53% inc.</td>
</tr>
<tr>
<td>Marker 6</td>
<td>31% inc.</td>
</tr>
<tr>
<td>Marker 7</td>
<td>19% inc.</td>
</tr>
<tr>
<td>Marker 8</td>
<td>12% inc.</td>
</tr>
<tr>
<td>Marker 9</td>
<td>13% inc.</td>
</tr>
<tr>
<td>Marker 10</td>
<td>47% inc.</td>
</tr>
</tbody>
</table>

Random Forests Analysis

- Markers 7 and 9 have < 20% effect, but most predictive
- Markers 3 and 5 have > 50% effect, but least predictive

Important markers may be left out due to assay/biological variability!
Impact of Analytical/Biological Variability on Predictive Power

- Marker X with 15% CV is a key predictor from the multi-analyte panel.
- Prediction Accuracy from cross-validation is 94%

- Same Marker X in the panel from another lab has 35% CV
- Prediction Accuracy from cross-validation drops to 75%

Biomarker Evaluation & Reproducibility affected by analytical issues!

EBF, Barcelona, Nov 2015