VOLUMETRIC ABSORPTIVE MICROSAMPLING AS AN ALTERNATIVE TOOL FOR THERAPEUTIC DRUG **MONITORING OF FIRST-GENERATION ANTI-**EPILEPTIC DRUGS

Sofie Velghe, Christophe Stove

ANTI-EPILEPTIC DRUGS

First generation AEDs

e.g. carbamazepine, phenobarbital, phenytoin, valproic acid, ...

- Significant interindividual variability in pharmacokinetics (ADME)
- Narrow therapeutic ranges

Optimization and individualisation of therapy = challenging

Second generation AEDs

TDM of first generation AEDs Excellent tool for therapy optimization and individualization Helpful in maximizing safety and

- benefits

Third generation AEDs

e.g. oxcarbazepine, topiramate, ... e.g. lacosamide, retigabine, ...

TDM

Most often performed on venous blood samples (whole blood, plasma or serum)

- Invasive nature
- Typically large amounts of blood taken
- Need for a phlebotomist

Growing interest in the use of nonand minimally invasive alternative sampling strategies

ALTERNATIVE SAMPLING STRATEGIES

One of the most commonly used = Dried blood spots

- Easy and minimally invasive (homesampling)
 - Non-contagious
- Small sample volume
- Increased analyte stability
- Convenient transport and storage
- Suitable for automation

- Only small volumes available:
- sensitive techniques required
- Risk of contamination
- Capillary vs venous
- concentration
- Extensive validation required
- (cfr. impact of Hct, influence of
- spotted volume, punching site)
- Hematocrit issue

Volumetric absorptive microsamping

VAMS DEVICES

Hydrophyllic polymer tip connected to a plastic handler
Wick up a fixed volume (approximately 10, 20 µL (or 30µL))
Eliminate the volumetric Hct bias associated with DBS
Maintain the benefits associated with DBS

Cost price

Currently incompatible with on-line analysis systems

Recovery may be impacted by Hct¹⁻⁴

De Kesel et al., Anal Chim Acta, 2015
Denniff et al., Anal Chem., 2014
Verougstraete et al., Clin Chem Lab Med., 2017
Kok et al., J Pharm Biomed Anal., 2018

STUDY OBJECTIVE

Development, validation, and application of an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC®-MS/MS) method for the determination and quantification of four AEDs and one active metabolite making use of VAMS devices.

SAMPLE PREPARATION

IS added to extraction solvent > no compensation for recovery issues

optimization of extraction comprehensively evaluated before validation

- Extraction at 22°C vs extraction at 60°C
- fresh VAMS, VAMS stored 3d RT, VAMS stored 3d 60°C; QC2 Hct 0.41 Using
 - VAMS stored 3d 60°C; QC2 Hct 0.62

SAMPLE PREPARATION

Conclusion:

SAMPLE PREPARATION

Preparing the VAMS

Drying for 2 hours

Removing of VAMS tips

Extraction with 100 µL 80/20 ACN/H2O + IS

LC-MS/MS

Chromatography (Waters Acquity UPLC®)

- Column: Chromolith® reversed phase (RP)-18 endcapped • (100x4.60 mm; 5 µm)
- Mobile phase: 5mM ammonium acetate in H_2O (A) and in • ACN/H₂O 95/5 (B)
- Flow: 1.4 mL/min
- Column temperature: 45°C
- Total runtime: 10 min (total run time of runs in ESI⁺ and ESI⁻ • mode, washing and equilibrating)

Mass spectrometry (Sciex API 4000[™])

- MRM[™] mode •
- Positive ionization mode (ESI⁺): CBZ, CBZ-E, OXC •
- Negative ionization mode (ESI-): VPA, PB, PHT •

Thermomixer: 10min; 60°C; 1000 rpm +Centrifugation: 10min; 10 000 g

70 µL supernatant + 70 µL H2O

METHOD VALIDATION

• Accuracy • Precision • Carry-over • Selectivity Bio-analytical specific parameters • Homoscedasticity Calibration model • Stability • Matrix effect VAMS specific parameter • Impact of Hct on Recovery

\bigstar Based on U.S. FDA and EMA guidelines

ACCURACY AND PRECISION

00	Ir	ntra-batch	precision (%RSD) (n = 4	x 2)	
	VPA	PB	PHT	CBZ	CBZ-E	Conclusion:
LLOQ	7.47	9.76	8.60	8.76	7.67	
Low	3.83	7.25	6.60	7.48	6.54	Inter- and intra
Mid	5.61	4.49	7.86	5.99	5.32	The
High	8.29	3.87	4.11	8.96	5.08	
						com
	Ir	nter-batch	precision (%RSD) (n = 4	x 2)	
	VPA	PB	PHT	CBZ	CBZ-E	Accuracy:
LLOQ	7.47	9.76	8.60	8.76	7.67	Tho
Low	8.15	7.83	6.60	7.48	6.63	
Mid	5.61	4.49	7.86	7.34	5.32	tor V
High	8.29	6.16	7.68	8.96	5.08	
		Accu	racy (%Bias) (n = 4 x 2)		
	VPA	PB	PHT	CBZ	CBZ-E	
LLOQ	-15.3	-1.42	4.22	9.85	4.02	
Low	18.2	-1.48	0.87	0.72	14.0	
Mid	-1.14	-2.70	3.71	8.15	8.22	
High	-1.32	1.51	4.84	2.01	4.97	

Acceptance criteria:

- Precision: %RSD within ±15% (LLOQ within ± 20%)
- Accuracy: %bias within ±15% (LLOQ within ± 20%)

a-batch Precision: acceptance criterium was met for all pounds

acceptance criterium was met except /PA (18.2% bias at Low QC)

ARRY-OVER AND SELECTIVI

- Carry-over: •
 - No carry-over detected when injecting blank samples after the highest calibrator •
- Selectivity: •
 - No unacceptable interferences were observed in VAMS prepared from blank blood originating from 6 \bullet different donors

GHENT

Advantage: possibility to distinguish between CBZ-E and OXC (same MRM transitions): the presence of OXC in a patients sample will not interfere with the calculated CBZ-E concentration

CALIBRATION DATA

Compound	Calibration model
VPA	Quadratic regression, 1/x
PB	Linear regression, 1/x
PHT	Unweighted linear regression
CBZ	Linear regression, 1/x ²
CBZ-E	Linear regression, 1/x

Back-calculated concentrations: Acceptance criterium: mean back-calculated concentration within ±15% of the nominal value (LLOQ 20%) Using these models > mean back-calculated concentrations did not differ more than 7% for all calibrators GHENT UNIVERSITY

homoscedasticity

Heteroscedastic

heteroscedastic

heteroscedastic

heteroscedastic

heteroscedastic

STABILITY

Temp				Stability fo	or 4 days (%difference	e) (n = 3)				Conclusion:
•	V	PA	F	РВ	PI	ΗT	CI	BZ	CB	Z-E	All compounds were stable
RT 4°C -20°C 60°C	Low QC -6.04 2.06 12.1 2.30	High QC -9.32 2.03 0.25 -2.33	Low QC -5.34 5.16 8.29 0.03	High QC -6.15 -0.40 -6.23 -7.84	Low QC -8.43 -0.75 1.54 -4.85	High QC 4.16 12.4 9.95 3.03	Low QC -9.22 -0.31 0.38 -12.1	High QC -5.51 4.69 -3.61 -5.12	Low QC 7.45 15.9 17.5 2.87	High QC -4.31 5.29 0.02 -9.24	Solution of the stable of t
RT 4°C -20°C 60°C	11.5 11.8 11.8 6.30	0.74 -7.97 -4.42 -7.97	-6.01 -7.22 -3.09 0.56	Stability fo -10.5 -13.6 -11.8 -12.97	or 1 week (-8.33 -8.37 -6.12 -10.3	% difference 9.60 3.75 5.20 2.31	e) (n = 3) -13.7 -13.9 -13.4 -10.9	-8.83 -13.5 -14.9 -12.3	5.94 6.89 4.98 -5.94	-0.10 -5.42 -0.76 -15.3	Stored at 60°C
RT 4°C -20°C 60°C	17.6 15.1 15.5 16.3	10.4 18.0 17.6 28.1	5.07 7.00 13.2 15.5	Stability fo 0.27 5.88 7.36 6.77	r 1 month 11.9 11.8 9.46 11.0	(%differenc 9.18 7.75 7.38 13.3	e) (n = 3) -4.58 -3.64 -1.75 -10.8	3.15 -0.91 1.67 -0.85	4.01 11.4 5.11 -23.6	-4.12 -1.66 -0.22 -26.1	Processed samples (analytes+IS) were stable for at least 24h when stored in the autosampler (4°C)

MATRIX EFFECT

	Analyte matrix effect												
	VPA		PB		PHT		CBZ		CBZ-E				
	Low QC	High QC	Low QC	High QC	Low QC	High QC	Low QC	High QC	Low QC	High QC			
Mean of 6 donors (%)	95	95	112	103	81.2	79.5	127	131	134	138			
%RSD	3.64	3.36	5.11	4.82	2.29	2.12	10.69	8.08	12.37	11.61			

IS-corrected matrix effect

	VPA		PB		PHT		CBZ		CBZ-E	
	Low QC	High QC								
Mean of 6 donors (%)	103	101	98.3	95.7	98.6	95.6	93.1	90.4	95.4	99.0
%RSD	1.21	1.83	1.92	1.58	3.91	3.01	1.67	0.93	1.70	3.97

Conclusion:

Non-IS-corrected matrix effect PHT:
ionization suppression (>15%)
Non-IS-corrected matrix effect CBZ:
ionization enhancement (>15%)
Non-IS-corrected matrix effect CBZ-E:
ionization enhancement (>15%)

\$

♦ IS-corrected matrix effects: all within
90-103% > IS compensates for
differences in ionization

IMPACT HCT ON RECOVERY (PIPETTE

IS-compensated recovery High QC

IS-compensated recovery (%)

IS-compensated recovery (%) With the 0.42 Hct sample being normalized to 100%

IS-compensated recovery High QC

Conclusion:

♦ High recovery values were obtained

♦ When normalizing the 0.42 Hct sample to 100%, all -except for VPAwere within 15% of the 0.42 Hct sample

♦ VPA: the 0.62 Hct sample at low QC level differed 18% from the 0.42 **Hct** sample (15% at high QC level)

IMPACT HCT ON RECOVERY (WICKED

VAMS prepared by dipping into spiked blood (QC2&4) at 4 Hct levels

Conclusion:

100%), except for PB

analyzing samples with a Hct >0.60

Impact of Hct on recovery (dipping, High QC)

- ♦ All were within 16% of the 0.42 sample (set to
- ♦ If there would be an effect, it will be limited
- OHowever: recommendation to be cautious when

APPLICATION: EXTERNAL QUALITY CONTROL MATERIAL

- 2 sets of external quality control materials (serum)
- In order to be comparable with the calibration curve prepared in whole blood: ٠ 1 on 4 dilution with whole blood: replacing 250 µL of plasma (centrifugation of 1 mL of whole blood) by 250 µL of the external quality control materials

Conclusion:

 \bigcirc 35 out of the 40 measurements deviated less than 20% from the target value \bigcirc The mean concentrations were within ± 20% in all cases \bigcirc The %RSD < 15% for the quadruplicates, with the exception of PB from set C (owing to one deviating value)

APPLICATION: 75 REAL-LIFE PATIENT SAMPLES

\bigcirc 75 samples: 29 VPA, 13 PB, 13 PHT and 20 CBZ \rightarrow 8 of the VPA samples & 2 of the CBZ < LLOQ \rightarrow not quantified \bigcirc Reference: serum concentrations (immunoassay)

	Conc VAMS (µg/mL)	Calc serum conc (µg/mL)	Serum conc (µg/mL)	% difference between calc serun conc and serum conc	n VAMS conc/serum conc (%)			Conc VAMS (µq/mL)	Calc serum conc (µɑ/mL)	Serum conc (µa/mL)	% difference between calc serum conc and serum conc	VAMS conc/serum conc (%)
VPA ¹	29.3	41.9	49.5	-15.4	59.2			34.9	38.8	37.8	2.65	92.3
	56.2	80.3	79.0	1.63	71.1			7 35	8 17	8 70	-6.09	84 5
	39.2	56.0	64.6	-13.3	60.7			41.6	46.2	43.6	5.96	95.4
	61.7	88.1	74.7	18.0	82.6			0.99	11.0	10.6	2.77	02.2
	30.0	42.9	50.6	-15.3	59.3			9.00	11.0	0.00	3.11	93.2
	42.7	61.0	66.8	-8.68	63.9			8.82	9.80	8.20	19.5	107.6
	44.9	64.2	61.7	3.98	72.8			14.2	15.8	20.5	-22.9	69.3
	38.3	54.7	57.4	-4.78	66.7			16.9	18.8	19.4	-3.25	87.1
	45.9	65.6	86.3	-24.0	53.2			16.6	18.4	20.7	-11.1	80.1
	29.1	41.6	34.7	19.8	83.9			19.8	21.9	23.6	-7.00	83.7
	73.5	105.0	112.3	-6.49	65.5			40.7	45.2	41.2	9.66	98.7
	42.0	60.0	63.5	-5.49	66.2			36.9	41.0	33.6	22.1	109.9
	35.1	50.1	59.7	-16.0	58.8			22.0	24.4	21.4	14.1	102.7
	28.0	39.9	30.8	29.6	90.7			27.3	30.4	27.8	9.30	98.4
	72.2	103.2	104.7	-1.46	69.0						Mean±SD	Mean±%RSD
	48.7	69.6	82.1	-15.2	59.4						2.82±12.7%	92.5±12.4%
	63.7	91.0	93.8	-2.99	67.9							
	28.1	40.1	30.0	33.8	93.7							
	51.0	72.8	100.8	-27.8	50.6	\/ Ρ Δ·	mean of		31 = 68.2 +	17 7%	of [serum]	~ hl/nl r
	36.5	52.2	45.1	15.7	81.0	VI /\.	mean o		- 00.2±	11.1 /0		
	53.9	77.0	95.8	-19.7	56.2	PB:	mean of	f [VAMS	6] = 95.5±	12.4%	of [serum]	~ bl/pl r
				-Z.3/±1/.Z%	UO.ZII/./%							

Blood/plasma ratio 0.70 (Launiainen et al., Drug Test Anal., 2014) 1.

Blood/plasma ratio 0.90 (Morris et al., Ther Drug Monit., 1988) 2.

atio of 0.7 atio of 0.9

APPLICATION: 75 REAL-LIFE PATIENT SAMPLES

				% difference						% difference	
	Conc VAMS (µg/mL)	Calc serum conc (µg/mL)	Serum conc (µg/mL)	between calc serum conc and serum conc	VAMS conc/serum conc (%)		Conc VAMS (µg/mL)	Calc serum conc (µg/mL)	Serum conc (µg/mL)	between calc serum conc and serum conc	VAMS conc/serum conc (%)
PHT ³	14.3	20.1	15.8	27.2	90.5	CBZ ⁴	12.2	12.0	8.60	39.5	141.9
	5.47	7.70	5.32	44.7	102.8		8.56	8.39	6.50	29.1	131.7
	8.31	11.7	12.4	-5.65	67.0		5.91	5.79	5.20	11.3	113.7
	7.26	10.2	10.0	2.00	72.6		8.75	8.58	6.40	34.1	136.7
	7.23	10.2	9.10	11.9	79.5		2.71	2.66	2.30	15.7	117.8
	8.13	11.5	13.4	-14.5	60.7		11.7	11.5	13.1	-12.2	89.3
	10.3	14.6	13.6	7.01	76.0		6.51	6.38	5.40	18.1	120.6
	4.00	5.63	6.00	-6.14	66.6		9.36	9.18	10.6	-13.4	88.3
	4.34	6.11	5.20	17.4	83.4		6.97	6.83	7.70	-11.3	90.5
	8.24	11.6	9.50	22.2	86.8		7.17	7.03	6.30	11.6	113.8
	6.61	9.31	7.80	19.3	84.7		6.56	6.43	6.80	-5.40	96.5
	10.6	14.9	13.3	12.4	79.8		4.76	4.67	5.00	-6.61	95.3
	4.23	5.96	6.70	-11.0	63.2		7.87	7.72	5.40	42.9	146
				MassaloD			4.11	4.03	3.20	26.1	128.6
				Mean±SD	Mean±%RSD		10.6	10.4	8.80	18.2	120.6
				9.76±16.9%	78.0±15.4%		14.4	14.1	11.7	20.3	122.7
							10.3	10.1	8.00	26.1	128.6
							7.79	7.64	6.10	25.2	127.7
										Mean±SD	Mean±%RSD
										15.0±18.0	117.2±15.6

PHT: mean of [VAMS] = 78.0±15.4% of [serum] ~ bl/pl ratio of 0.71 mean of [VAMS] = $117.2\pm15.6\%$ of [serum] ~ bl/pl ratio of 1.02 CBZ:

3. Blood/plasma ratio 0.71 (Morris et al., Ther Drug Monit., 1988)

Blood/plasma ratio 1.02 (Houts., Principles and practice of immunoassay, 1991) 4.

NCLUSION

An LC-MS/MS method for the determination and quantification of 4 AEDs and 1 active metabolite, ()making use of VAMS, was **developed**.

The final method was **extensively validated**, including both bioanalytical and VAMS-specific \bigcirc parameters.

- Overall the **pre-set acceptance criteria** were met. $\left(\right)$
- Thorough optimization of the extraction procedure helped enabling a Hct-independent recovery. \bigcirc
- Application on external quality control materials and on real-life patient samples demonstrated the ()validity and the applicability of the developed procedure.

Sofie Velghe – Prof. dr. Christophe Stove

DEPARTMENT OF BIOANALYSIS LABORATORY OF TOXICOLOGY

christophe.stove@ugent.be sovelghe.velghe@ugent.be

Ghent University f y @ugent in **Ghent University**

www.ugent.be

