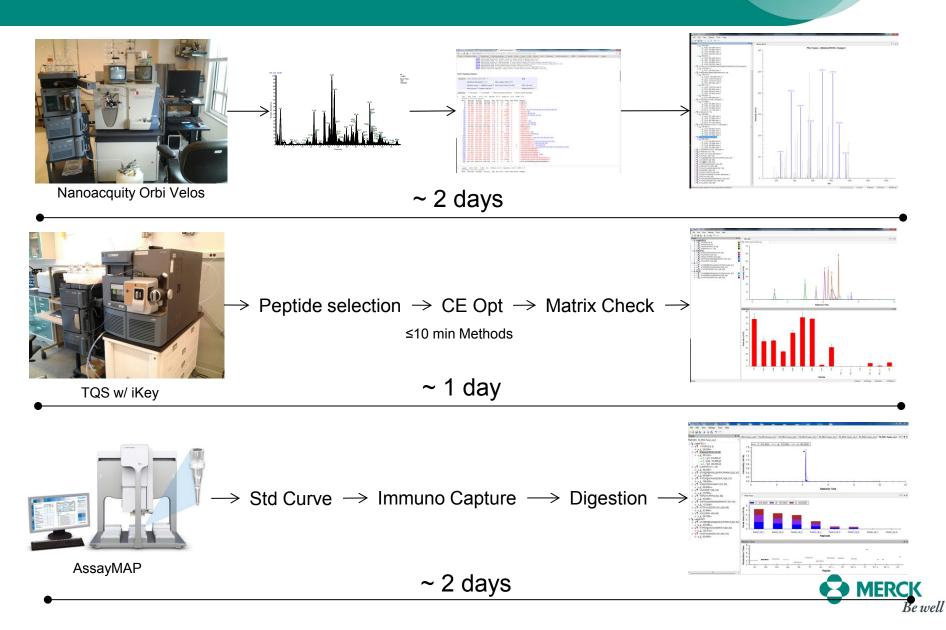
Application of LC-MS for Characterization and Bioanalysis of Therapeutic Antibodies

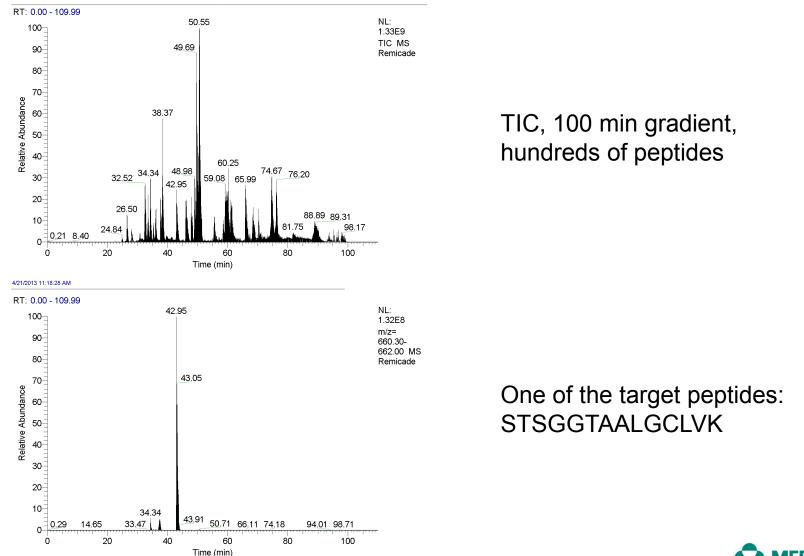
Kevin Bateman Distinguished Scientist Merck Research Laboratories Benno Ingelse Director Bioanalysis Quintiles, Bioanalytical and ADME labs

EBF 2014

Acknowledgements

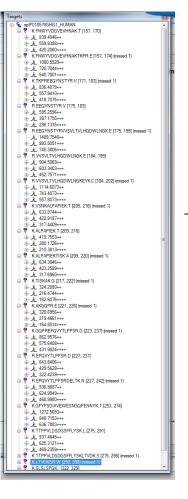
- Dan Spellman
- Qian Zhang
- BaoJen Shyong
- Diep Vu-Pham
- Eef Dirksen
- Bernard Choi
- Jane Harrelson


- Daniela Tomazela
- Maribel Beaumont
- Mohammad Tabrizifard
- Deepa Prabhavalkar
- Wolfgang Seghezzi
- Yaoli Song

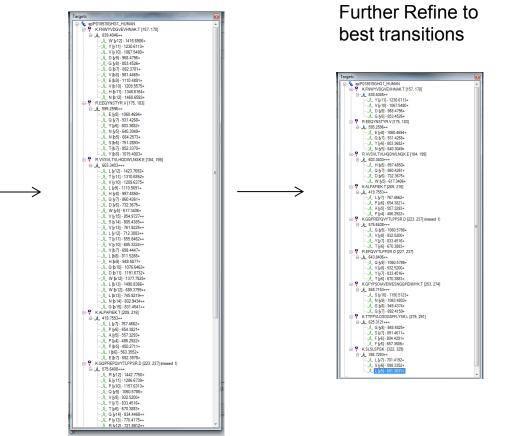

Method Development for LC-MRM-MS Based Monoclonal Antibody Quantitation

mAb/Protein Assay Development

HRMS peptide mapping for mAb

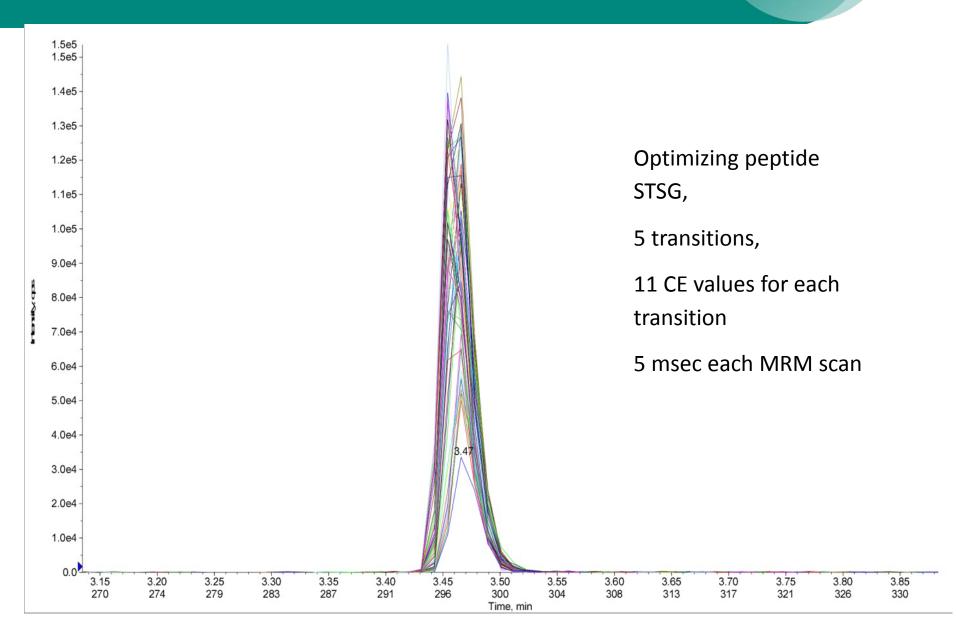


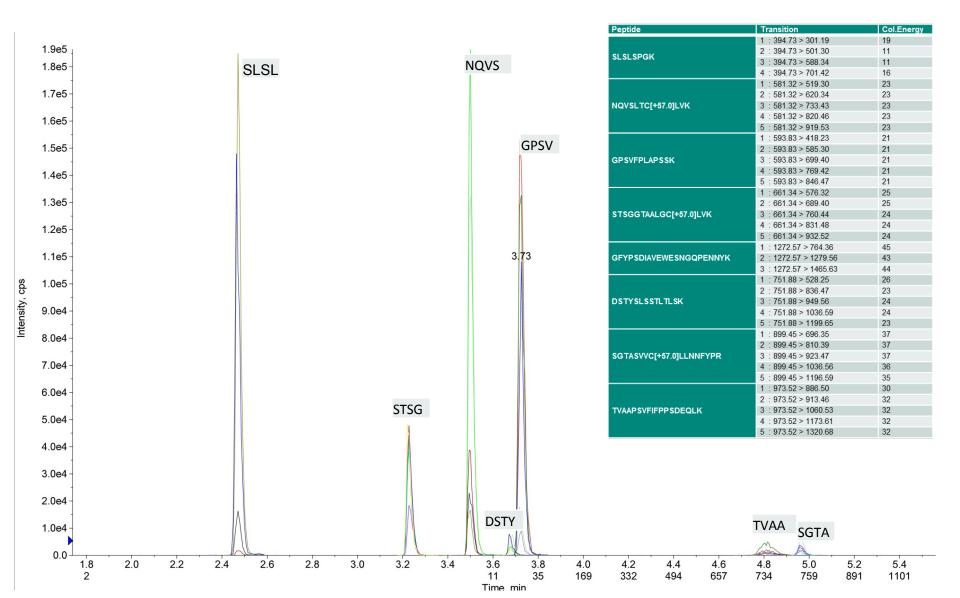
Waters nanoAcquity Velos-Orbitrap, 1 ul injection of 0.5 ug/ul digested MAb



Method Refinement and Optimization with Skyline

Start with long list of peptides: Multiple Charge States Many transitions

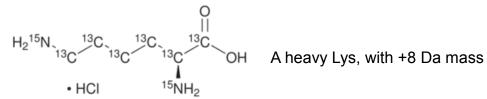

Refine to best peptide signals

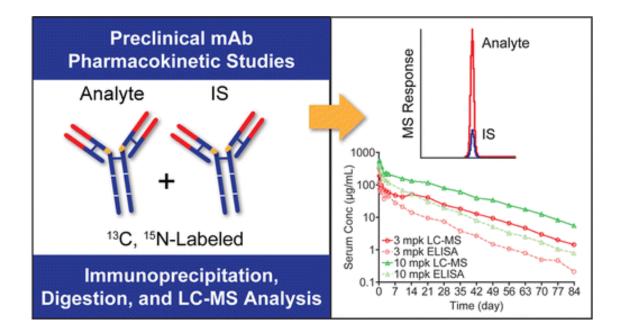

CE optimization

Example CE Optimization

The optimized, scheduled MRM for selected peptides

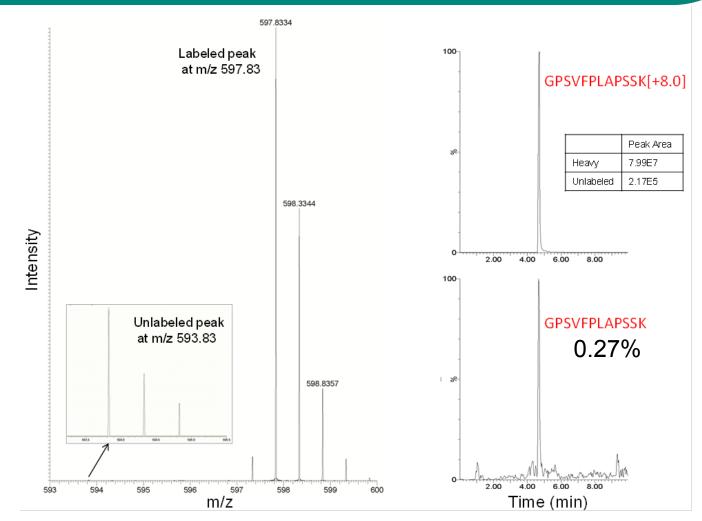
Internal standards for MS quantitation


 Typically incorporated heavy amino acid labeled by C13 or N15


- Correcting for variations in :
 - 1. Sample preparation
 - 2. LC performance
 - 3. Ionization efficiency
 - 4. MS response

Our internal standard is the intact mAb molecule

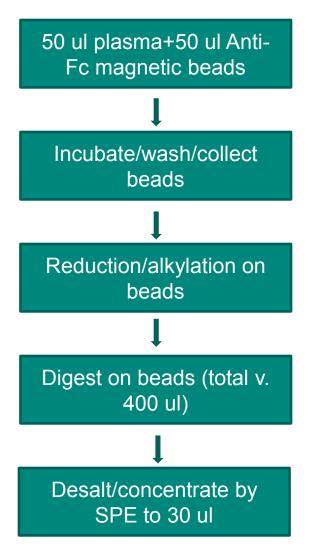
Sigma SILUmAb: full length MAb with heavy K and R



Zhang, et al., Anal Chem. 2014 Aug 14. [Epub ahead of print]

SILUmAb generates identical surrogate peptides to target mAbs

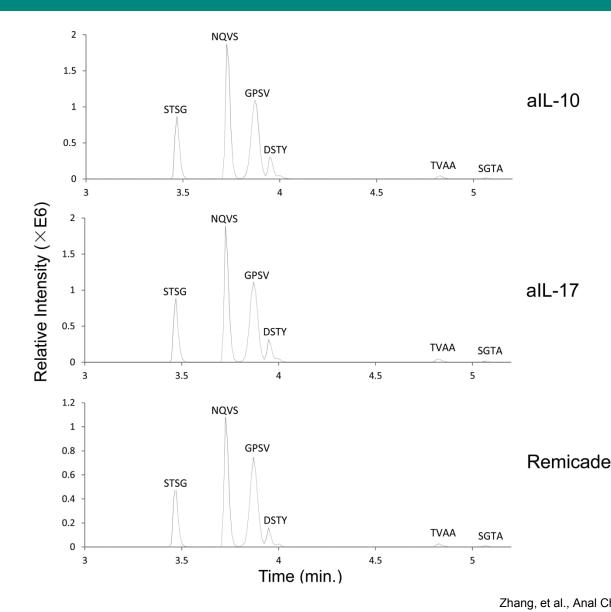
The mass spectrum (left) and MRM quantitation (right) for the selected peptide GPSVFPLAPSSK in SILUMAb. The signal of the labeled form (+8 Da) is more than 100 fold higher than the unlabeled form. The low abundance of the unlabeled peak indicates negligible interference from the internal standard.


Zhang, et al., Anal Chem. 2014 Aug 14. [Epub ahead of print]

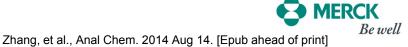
Evaluation of Generic Sample Preparation Approaches*

- 1. Pellet digestion of total plasma proteins Detected 5-10 ug/ml
- 2. Protein A/G (columns) pull-down of IgGs Detected 40 ug/ml
- 3. Anti-human Fc antibody pull-down of target IgG1
 Detected <0.25 ug/ml

Anti-human Fc antibody pull-down of target IgG1

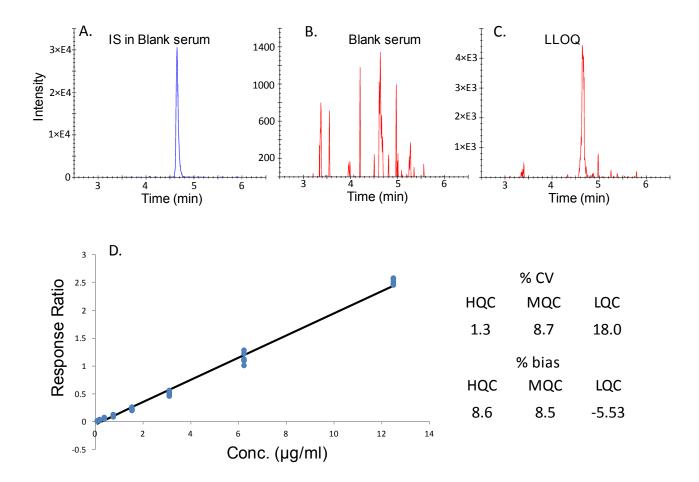


MagneZoom™ Goat Anti-Human IgG (FC) Kit


Oasis HLB 96-well µElution Plate, 2 mg Sorbent per Well, 30 µm Particle Size

Selected Peptides Represent Reliable Surrogate Measures Across Different Antibodies

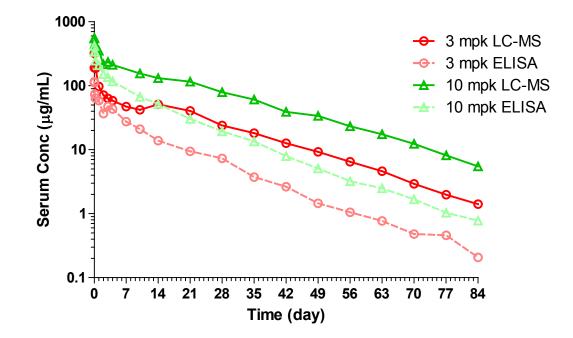
MRM experiment for three different mAbs. The total ion chromatogram of the monitored peptides indicates that the peptides can reproducibly represent different antibodies.


Interference peaks identified from different animal plasma

MDM transition ID	01 m/-	0		Bet	Guinea	Dakhit	Dec -l-	Martin
MRM transition ID	Q1 m/z	Q3 m/z	Mouse	Rat	pig •	Rabbit	Beagle	Monkey
HC.GPSVFPLAPSSK.+2b6	593.83	585.30			-			•
HC.GPSVFPLAPSSK.+2b8	593.83	769.42						
HC.GPSVFPLAPSSK.+2y4	593.83	418.23					-	-
HC.GPSVFPLAPSSK.+2y7	593.83	699.40		_	_		•	•
HC.GPSVFPLAPSSK.+2y8	593.83	846.47					•	•
HC.NQVSLTC[+57_0]LVK.+2y4	552.81	462.27				•	•	•
HC.NQVSLTC[+57_0]LVK.+2y5	552.81	563.32			•	•	•	•
HC.NQVSLTC[+57_0]LVK.+2y6	552.81	676.41				•	•	•
HC.NQVSLTC[+57_0]LVK.+2y7	552.81	763.44			•	•	•	•
HC.NQVSLTC[+57_0]LVK.+2y8	552.81	862.51				•	•	•
HC.SLSLSPGK.+2y3	394.73	301.22		•		•		•
HC.SLSLSPGK.+2y5	394.73	501.29					•	•
HC.SLSLSPGK.+2y6	394.73	588.32	•					•
HC.SLSLSPGK.+2y7	394.73	701.39		•	•	•	•	•
HC.STSGGTAALGC[+57_0]LVK.+2y5	632.83	519.30			•			•
HC.STSGGTAALGC[+57_0]LVK.+2y6	632.83	632.38	•	•		•	•	•
HC.STSGGTAALGC[+57_0]LVK.+2y7	632.83	703.42			•			
HC.STSGGTAALGC[+57_0]LVK.+2y8	632.83	774.45					•	
HC.STSGGTAALGC[+57_0]LVK.+2y9	632.83	875.50		•	•		•	
HC.GFYPSDIAVEWESNGQPENNYK.+2y12	1272.57	1465.63						
HC.GFYPSDIAVEWESNGQPENNYK.+2y11	1272.57	129.55						
HC.GFYPSDIAVEWESNGQPENNYK.+2y16	1272.57	764.36						
LC.DSTYSLSSTLTLSK.+2y10	751.88	1036.59				•		
LC.DSTYSLSSTLTLSK.+2y11	751.88	1199.65				•		
LC.DSTYSLSSTLTLSK.+2y8	751.88	836.47				•		
LC.DSTYSLSSTLTLSK.+2y9	751.88	949.56				•		
LC.SGTASVVC[+57_0]LLNNFYPR.+2y5	870.94	696.35						
LC.SGTASVVC[+57_0]LLNNFYPR.+2y6	870.94	810.39	1				•	
LC.SGTASVVC[+57_0]LLNNFYPR.+2y7	870.94	923.47	1					
LC.SGTASVVC[+57_0]LLNNFYPR.+2y8	870.94	1036.56	1			1		
LC.SGTASVVC[+57_0]LLNNFYPR.+2y9	870.94	1139.57	1			1		
LC.TVAAPSVFIFPPSDEQLK.+2b9	973.52	886.50	1	1				
LC.TVAAPSVFIFPPSDEQLK.+2y10	973.52	1173.62		1				
LC.TVAAPSVFIFPPSDEQLK.+2y11	973.52	1320.68	1			+		
LC.TVAAPSVFIFPPSDEQLK.+2y8	973.52	913.46	1		+	+		
LC.TVAAPSVFIFPPSDEQLK.+2y9	973.52	1060.53						

'HC' means the peptide is from the IgG heavy chain and 'LC' means the peptide is from the IgG light chain. '•' indicates an identified interference peak for the specific transition. Zhang, et al., Anal Chem. 2014 Aug 14. [Epub ahead of print]

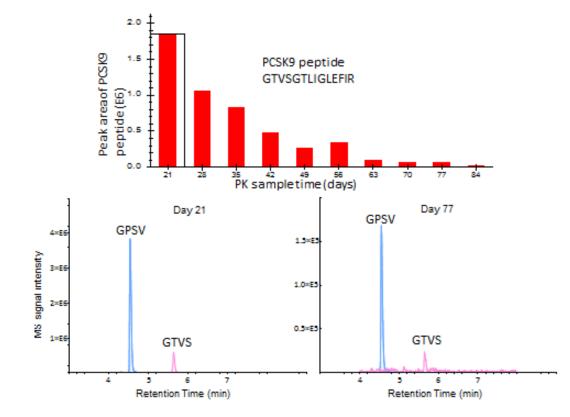
Performance characteristics of the LC-MRM-MS method



A) IS signal from single blank, B) Analyte signal from single blank, C) LLOQ of analyte, D) Standard curve from 6 independent replicates. Percent CV and Bias are shown for low (0.5 ug/mLµg/mL), medium (5 ug/mLµg/mL) and high (20 ug/mLµg/mL) QC (n=3) samples.

Zhang, et al., Anal Chem. 2014 Aug 14. [Epub ahead of print]

LC-MS vs. LBA based mAb quantitation



The comparison of LBA data and LC-MS data for two doses of aPCSK9 mAb in Cyno Monkey

- Why are they different?
- How do we interpret the data?
- Which one is right?

LC-MS vs. LBA based mAb quantitation

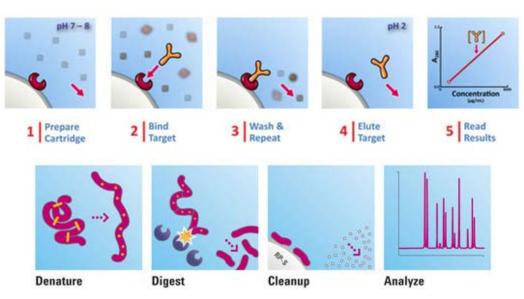
The PCSK9 ligand is present in the anti-Fc immuno-captured aPCSK9 samples

• We can detect and quantify both the drug and the ligand target at the same time in the same sample.

Generic Automated Method for Liquid Chromatography–Multiple Reaction Monitoring Mass Spectrometry Based Monoclonal Antibody Quantitation for Preclinical Pharmacokinetic Studies

Qian Zhang[†] Daniel S. Spellman,[†] Yaoli Song[‡] Bernard Choi,[§] Nathan G. Hatcher,[†] Daniela Tomazela,[‡] Maribel Beaumont,[‡] Mohammad Tabrizifard,[‡] Deepa Prabhavalkar,[‡] Wolfgang Seghezzi,[‡] Jane Harrelson,[†] and Kevin P. Bateman^{*†}

Increased Throughput for mAb Quantitation: Agilent AssayMap Bravo Platform and Transfer of LC-MS/MS assay to Acquity UPLC/TQS MS Platform


Agilent AssayMAP

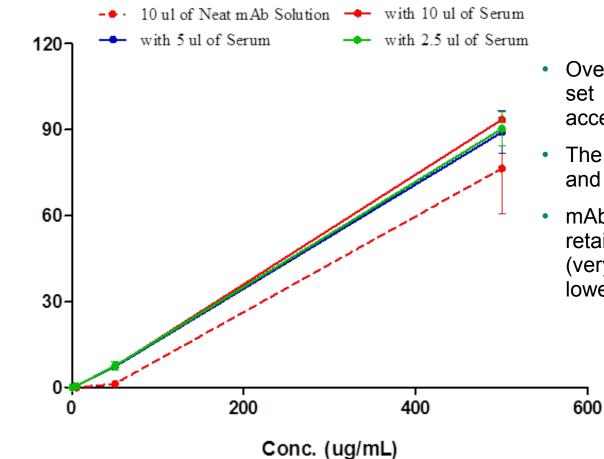
The Agilent AssayMAP technology is an open access, walkaway automation solution specifically designed for biomolecule sample preparation

Protein A-based Affinity Enrichment

In-solution Enzymatic Digestion

BRAVO Evaluation

- Objective: To test the automation capability for preclinical mAb PK.
 - Test the maximum and minimum loading for mAb, biomatrices, mAb in matrix
 - Reproduce preclinical mAb PK protocol on automation platform and test performance.



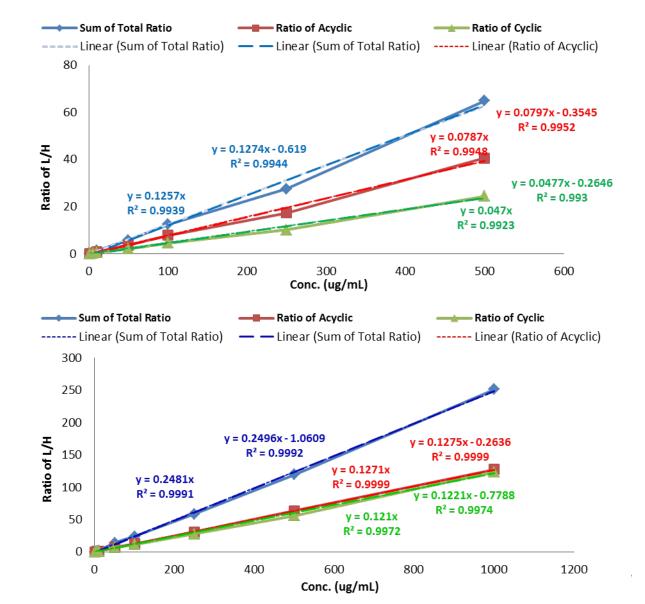
Experimental Detail of Evaluation

- Mouse serum filtered with 0.2 um filter before used
- Internal Standard peptides 2 ul of isotopic labeled of targeted peptide
- Concentration of mAb and Matrix :
 - 4 levels of mAb Concentration: 500, 50, 5, and 0.5 ug/mL (10 ul total volume/per sample)
 - 3 levels of Matrix: 10, 5, 2.5 ul/ per sample (final total sample volume brought to 20uL)
 - 4 levels of neat mAb solution were used as control
 - All samples run in triplicate
- Prepared samples with AssayMap Ab-purification and in solution digestion protocols
- Analyzed via Waters TQ-S instrument with LC/MS-MS (MRM) method
- Data Process with Skyline software by sum of peak area of every transition from targeted peptides

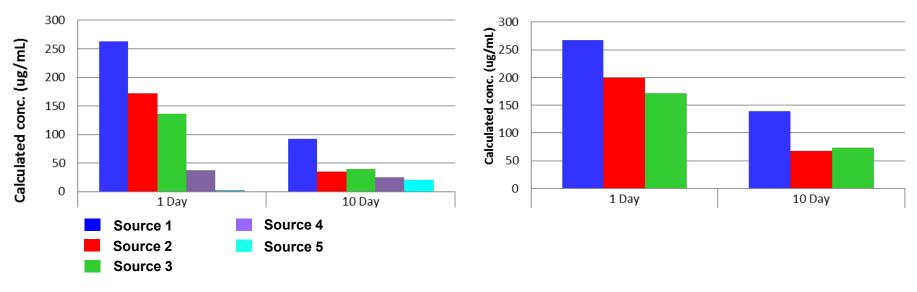
Standard Curve of Targeted peptide in Mouse Serum

- Overall, the variability from this set of samples is within acceptable range ($\mathbb{R}^2 > 95$).
- The linearity of loading of sample and matrix were good
- mAb alone appears to be retained by protein A column (very low signal or absent at lowest concentration)

Total ratio of L/H peptide


Standard Curve of Targeted peptide in Mouse Serum: High Throughput vs. Standard Protocol

Standard Protocol


- LLOQ @ 17pM of starting protein
- 10 uL serum
- 8 uL injection

High Throughput Protocol

- LLOQ @ <3.4 pM of starting protein
- 5 µl serum
- 5 uL injection
- Improved linear range, and response

The Calculated Concentration of Targeted Peptide: **High Throughput vs. Standard Protocol**

Magnetic Beads Study Summary

AssayMap Study Summary

Calculated concentration is within the linear range (1-500 ug/mL);

PBS control might have some interfere

Calculated concentration is within the linear range (1-1000 ug/mL)

Equivalent data generated by either method

Summary Comparison for Standard vs. HT

	Original	Method	HT Me	thod
	Method	Cost	Method	Cost
tested serum volume	20 ul		10 - 2.5 ul	
Linear range	2.44-625 ug/mL		1-1000 ug/mL	
IP- pull down	Magnetic beads	~\$33/per sample	Protein A Tips	~\$4/per sample
IP-Instrument	Manual	priceless	Agilent Bravo	\$~100,000
maximum sample # /per process	32 individual samples		96 well plate	
Time (hrs) /per process	~2-4 hrs	*sample tranfer	~2-3 hrs	No transfer for next step
Protease Digestion	trypsin	~\$ 7	trypsin	~\$ 7
Protease-Instrument	Manual		Agilent Bravo	
maximum sample # /per process	32 individual samples		4 x 96 well plates	
Time (hrs) /per process	~7-9 hrs	** continuous protease digestion	~1-2 hrs before and after digest	**overnight protease digestion
Internal standard volume (ul)	15		2	
Final volume (ul)	~ 90-100		~90-100	
Instrument time for LC/MS/MS	20 min/per sample		7 min/per sample	
Total Assay time for 96 wells	~ 2 weeks		2.5 days	

Increased Throughput for mAb Characterization: Methionine Oxidation by LC-MRM vs. LC-UV-MS

Chromatogram of Peptide maping (UV)

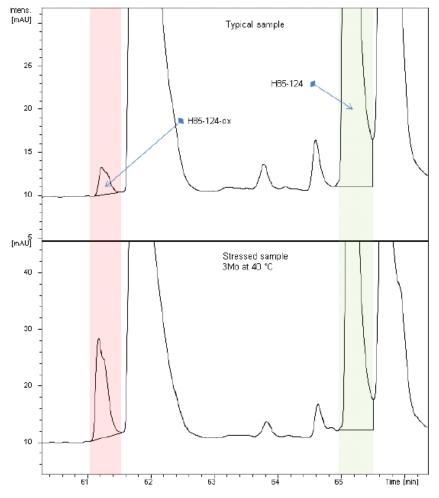


Figure 7: Typical integration of oxidized peptide H85-124 and non-oxidized peptide on the 214 nm UV trace for a typical and a stressed sample.

Oxidized Methionine¹⁰⁵ results at ADV department

• The ADV analysis results of 2 batches MK-XXXX :

Samples	GIn-1 conversion (EIC)	Met-105 oxidation (EIC)	Met-105 oxidation (UV)	Met-252 oxidation (EIC)		Met-428 oxidatio n (EIC)	Asn-384, Asn-389 deamidatio n	Asn-384, Asn-389 Succinimide	Asn55 deamidation	Asn55 Succinimide
L00036374 T=0Mo	93.7%	6.6%	4.0%	4.4%	0.4%	0.5%	6.3%	1.7%	0.5%	1.7%

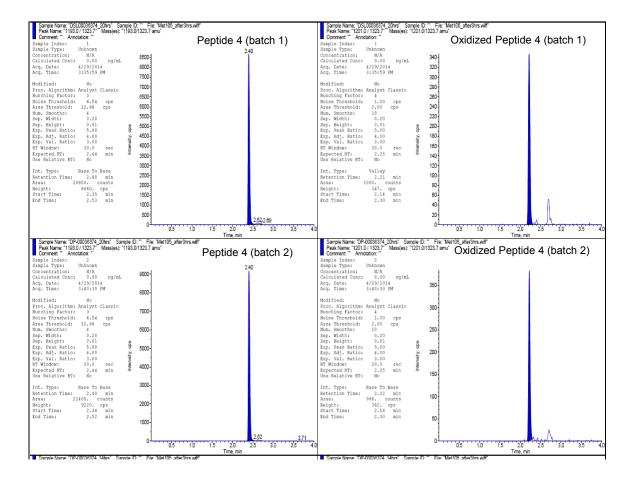
Samples	GIn-1 conversion (EIC)	Met-105 oxidation (EIC)	Met-105 oxidation (UV)		Met-358 oxidation (EIC)	Met-428 oxidation (EIC)	Asn-384, Asn-389 deamidation	Asn-384, Asn-389 Succinimi de	Asn55 deamidation	Asn55 Succinimide
0000361374 Comparability	93.9%	5.9%	3.9%	3.2%	0.3%	0.8%	6.9%	1.9%	0.6%	1.9%

Oxidized Methionine¹⁰⁵

Digestion:

-25 μ L (0.5 mg/mL) of MK-XXXX in 0.5M Tris pH 7.5 + 25 μ L 8M Urea + 10 mM DTT : mix, incubate for 45 min at 55°C

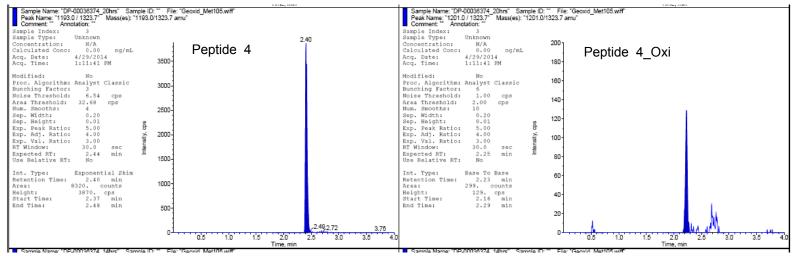
-Add 12.5 μL iodoacetamide to the mixture : mix, incubate for 45 min at 55°C

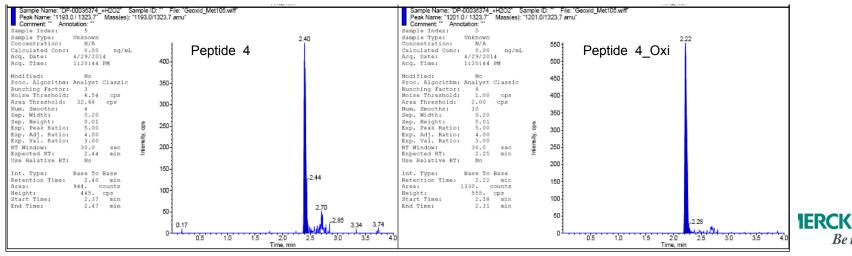

-Add 150µL Trypsin (2 µg/mL) in 0.25M Tris pH 7.5 : mix and incubate o/n at 37°C

UPLC Methode :

Run time : 4min Gradient : -0-2 min : 0-30% ACN -2-3 min : 30-90% ACN Solvent : A _0.05% FA in Milli Q; B_0.05% in ACN Injection : 1µL Column : Acquity UPLC BEH Shield RP C18 2.1 mm × 50 mm x1.7 µm

MS conditions :


CE and DP were calculated by Skyline TIS mode



Trypsin Digestion after Treatment with H₂O₂

Without treatment

Treatment with H₂O₂

Be well

Oxidized Methionine¹⁰⁵ (peptide 4)

<u>Date</u>	<u>Batch</u>	<u>Conc. 1</u> (mg/mL)	<u>Peak area</u>	<u>Peak area</u> <u>Ox</u>	<u>Mean percentage</u> of the Oxidized <u>Met</u>	<u>% CV</u>	<u>Digestion</u> <u>n=</u>	<u>Injections</u>	<u>ADV</u> (EIC)	<u>ADV</u> (UV)	<u>Q1-</u> Q3		<u>MS</u>	<u>Inject</u> (μL)
27-May-14	O000361374	0.054	172627	8109	4.5	4.0	3	15			1193-	>580	5500	5
03-Jun-14	O000361374	0.054	152280	8350	5.2	9.7	3	15			1193-	>580	5500	5
24-Apr-14	O000361374	0.054	22400	966	4.1		1	1	5.9	3.9	1193-	>1323	4000	1
		Conc. 1		Peak area	<u>Mean percentage</u> of the Oxidized		Digestion		<u>ADV</u>	ADV	<u>Q1-</u>			
<u>Date</u>	<u>Batch</u>	(mg/mL)	Peak area	Ox	Met	<u>% CV</u>	<u>n=</u>	Injections	(EIC)	<u>(UV)</u>	Q3		<u>MS</u>	
27-May-14	L00036374	0.054	119040	5968	4.8	3.8	3	15			1193-	>580	5500	5
03-Jun-14	L00036374	0.054	124436	6370	4.9	7.2	3	15			1193-	>580	5500	5
24-Apr-14	L00036374	0.054	20800	1000	4.6		1	1	6.6	4.0	1193-	>1323	4000	1

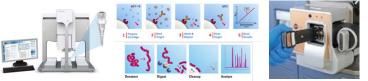
Characterization Summary

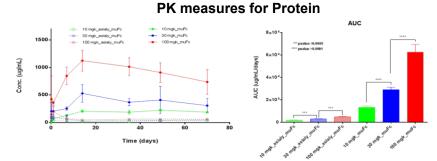
- Targeted protein quantitation for specific modifications can improve throughput for protein characterization
- Improved throughput also enables more complex experiments to be completed with reduced turnaround time while improving overall precision

Future Directions

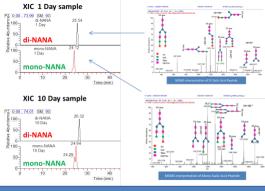
- Going beyond ligand binding assays
 Modified protein quantification
- Microsampling approaches for protein quantification
 - Reducing animal usage
 - Improving data quality

Going Beyond LBA Approaches

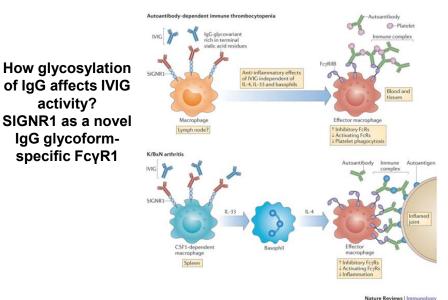

BaoJen Shyong


Goal: Provide sensitive (0.1-1ug/mL LLOQ), high throughput LC-MS-based pharmacokinetic measure of therapeutic protein with additional measures of the glycosylated peptide as a secondary requirement

Background

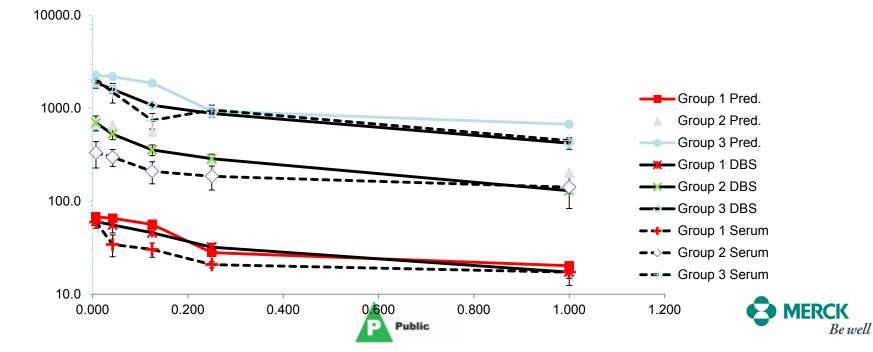

- Indicated for anti-inflammatory activity (arthritis, ITP, etc..)
- Recombinant alternative to plasma-derived Immunoglobulins (Ig)
- Anti-inflammatory activity of commercial intravenous Ig (IVIg) is derived in part from the presence of a small fraction of specific α2,6 sialylated glycoforms in the Fc region of IgGs.
- An α 2,6 sialylated Fc has been engineered to provide an Ig with greater sialic acid content

Full Automated Assay Implemented with Nanotile coupled LC-MS

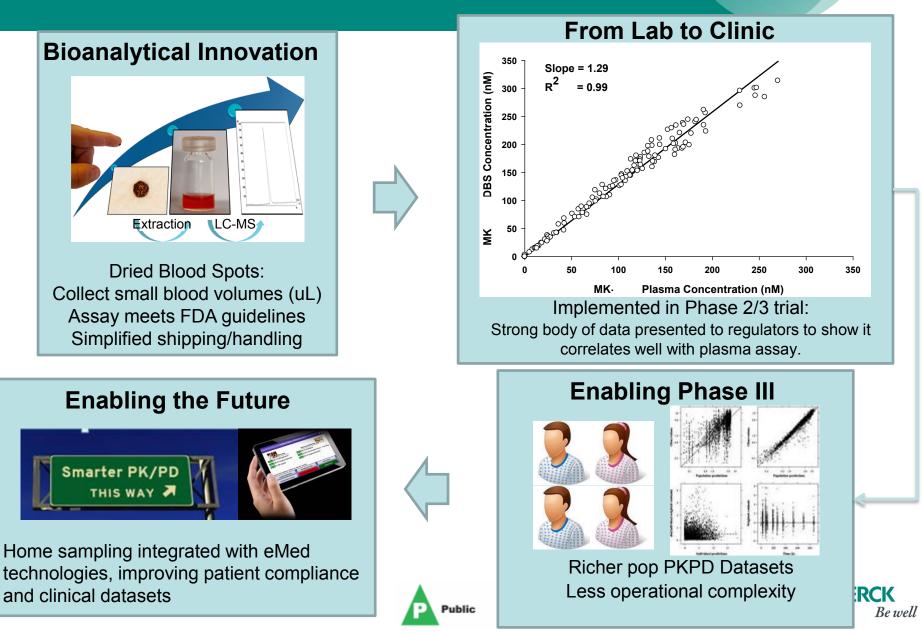


Monitoring and Relative Quantitation of Glycoforms

Di-sialyated glycopeptide was less than 70% of total glycopeptides


Nature Reviews Immunology 13, 176-189 (March 2013)

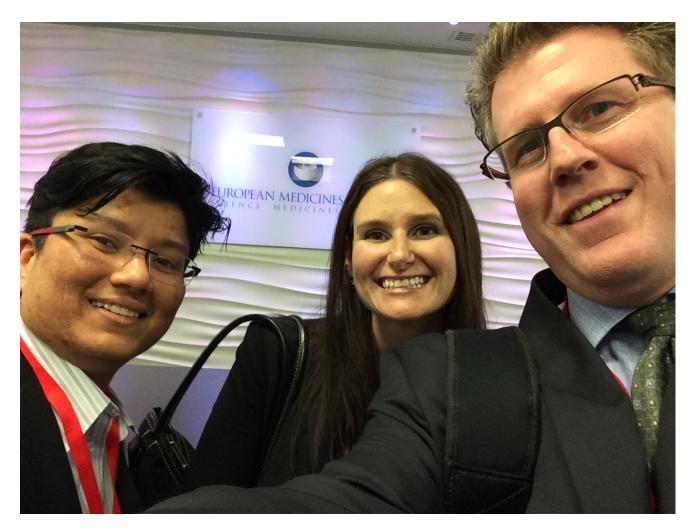
DBS for mAb


- Serum Study
- 3 dose groups (3, 30, 100 mpk)
- 3 mice per time point with 5 time points (45 total animals)
- 50 mg of mAb required

DBS Study

- 3 dose group (3, 30, 100 mpk)
- 3 mice per group with 5 time points (9 total animals)
- 10 mg mAb required

Dried Blood Spots: From Lab to Clinic


EMA Feedback on DBS in the Clinic

- For MK-XXXX, specifically: "it is considered that the approach to support the use of DBS as the sole source of PK data for the remainder of the MK-XXXX Phase 3 program is robust and acceptable under the conditions described"
- For general bridging approach, including use of pop PK modeling: "The implementation of DBS requires unique considerations which are not readily translatable to other development programs. However, the overall strategy is endorsed."
- For general content of BA validation package: "The presented approach could serve as a basis for a validation of DBS (under the conditions discussed) and depending on results, could support the use of the DBS in other clinical programs. In absence of a defined regulatory framework to guide this process, the Applicant could request a follow up once data will be available for analysis."
- More general feedback: "Any candidate substance for DBS will need to be evaluated for being suitable for this approach (bioanalytically, PK wise, etc) and the qualification approach may need to be adjusted accordingly."

Merck is implementing DBS for both small and large molecule sample collection in clinical trials

EMA Selfie

