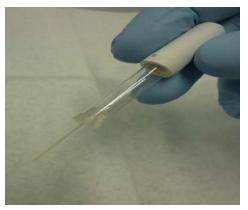
Development of a bioanalytical method for the quantification of a phosphorothioated oligonucleotide in human plasma capillary micro-sample using LC-MS/MS

> By Ranbir Singh Mannu 22 November 2013

Introduction

- Advantages of capillary micro-sampling
- Oligonucleotides
- Method development challenges
- * Mass spectrometer infusion
- Liquid chromatography
- ***** Extraction procedure
- Results
- Conclusion



The aim of this research was to demonstrate the compatibility of capillary micro-sampling with a difficult and challenging class of compounds.

Capillary micro-sampling

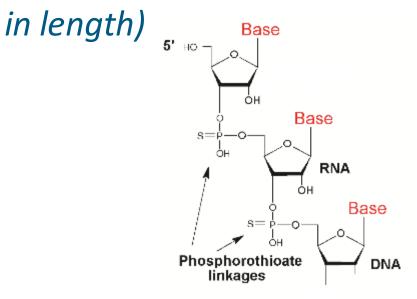
A technique used to collect or handle blood, serum or plasma by drawing liquid into a glass tube by capillary action

Interest and use of the technique in bioanalysis has increased over the past few years

Advantages of capillary micro-sampling

- **Reduction** in the amount of animals required.
- Tail vein used rather then retro orbital sampling, hence no anaesthesia required.
- Shorter restraint times, less need for warming rodents.
- Less need for terminal bleeds.
- Less consumption of test material
- Less rodent facilities required
- Less technicians required

Method Development

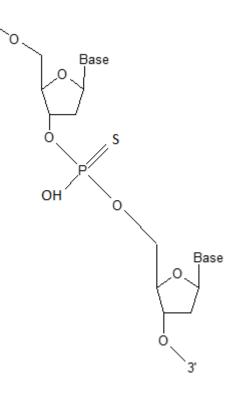

Step 1: Develop conventional plasma method.

Step 2: Modify extraction procedure for capillary micro-sample analysis.

Oligonucleotides

Synthetic nucleic acid-based drug candidates (Typically 15-35 nucleotides

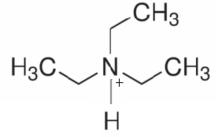
Bind to target mRNA and prevent translation

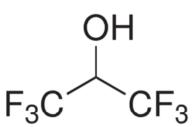

Oligonucleotides continued

Analyte sequence A*T*G*C*C*T*G*G*A*T*T*G*C*G*C*G*A*T*T*G Mass: 5825 Da Internal standard sequence A*T*G*C*C*T*G*G*A*T*T*G*C*G*A *Phosphorothioate linkage Mass: 4832 Da Simulates typical anti-sense therapeutic

Method development challenges for oligonucleotides

- Highly charged poly-anionic backbone dominates the chemistry of nucleic acids.
- Susceptible to nuclease degradation
- Prone to adsorption
- Strongly protein bound
- Multiple charge states
- MS/MS selectivity challenge

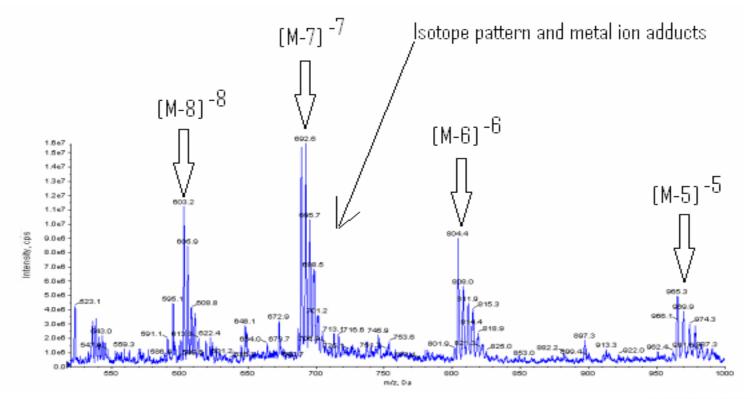




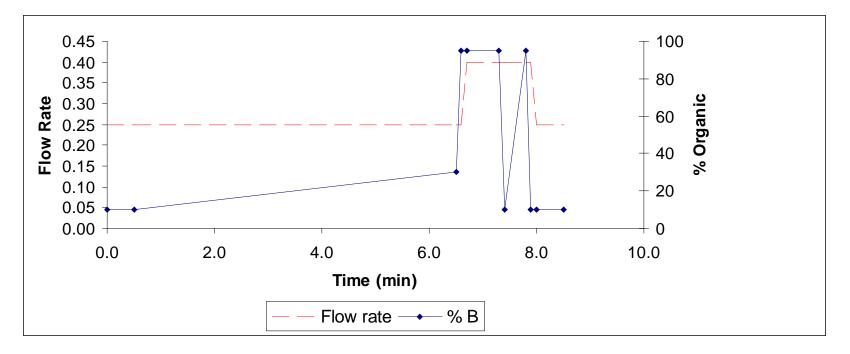
Considerations for chromatographic separation

Ion-pair reversed phase is the system of choice for LC-MS/MS analysis of oligonucleotide.

- Triethylamine (TEA)
 Ion pair reagent for acidic compounds
 Shields the acidic groups of the oligo
 Typically active at 0.05-2%
- Hexafluoroisopropanol (HFIP)
 Extremely volatile acidic solvent
 Lowers the pH of TEA-containing mobile phase solvents, thus
 increasing the efficiency of the oligo-TEA ion pairing
 Readily evaporated in the MS source.



Mass spectrometer Infusion


- Infused on an AB-Sciex API 4000 at 50 μg/mL
- ✤ Prepared in Water: MeOH: HFIP: TEA 70:30:1:0.1 v/v/v/v
- Infusion solution at 0.15 mL/min whilst under LC flow of 0.15 mL/min (H2O:MeOH:HFIP:TEA 70:30:1:0.1 v/v/v/v)

Liquid chromatography

Mobile phase A= Water:HFIP:TEA 100:1:0.1 v/v/v Mobile phase B= MeOH:HFIP:TEA 100:1:0.1 v/v/v Column= Acquity BEH C18 1.7 µm 2.1 x 50 mm Column temperature= 50 °c

Conventional plasma extraction procedure

Liquid-Liquid extraction followed by reversed phase SPE

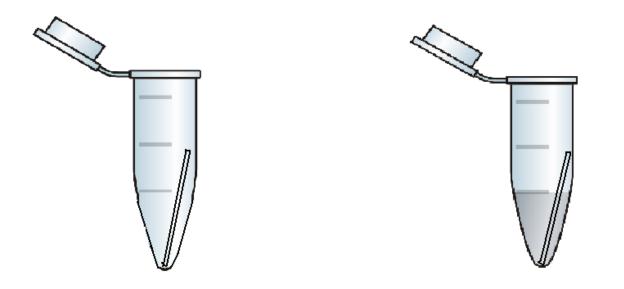
Step 1: liquid-liquid extraction

1	Aliquot 200 μL into 1.5 mL Eppendorf tubes
2	Add 500 μ L of water: ammonia (95:5 v/v) to each tube and mix for 10 min.
3	Add 100 μL of phenol: chloroform: isoamyl alcohol (25 : 24 : 1, v/v/v)
4	Transfer 600 μ L of the supernatant to a 2 mL 96 well plate.
5	Add 600 μL of Water: HFIP: TEA (100: 2: 0.2, v/v/v)

Step 2: Reversed phase SPE

6	Prime SPE plate (HLB 10mg) with acetonitrile
Ľ	
7	Prime SPE plate with Water: HFIP: TEA (100: 1: 0.1, v/v/v)
8	Transfer entire sample to SPE plate
9	Wash plate with Water: HFIP: TEA (100: 1: 0.1, v/v/v)
10	Elute sample into 96-well plate with acetonitrile: water: TEA (60: 40:1, v/v/v)
11	Evaporate to dryness under stream of nitrogen at nominal 40 °C
12	Re-dissolve in methanol: water: HFIP: TEA (10 : 90 : 2 : 0.2, v/v/v/v)
13	Cap plate and vortex mix, centrifuge and submit for analysis

Modification of conventional plasma method for capillary micro-samples


- Reduced sample volume compared with typical plasma analysis. 20 μL plasma capillary sample
- Requires a suitable washout solvent in which the analyte is soluble and will not precipitate proteins
- General expectations for oligonucleotide analysis is to achieve low ng/mL LLOQs
- Dilution of samples

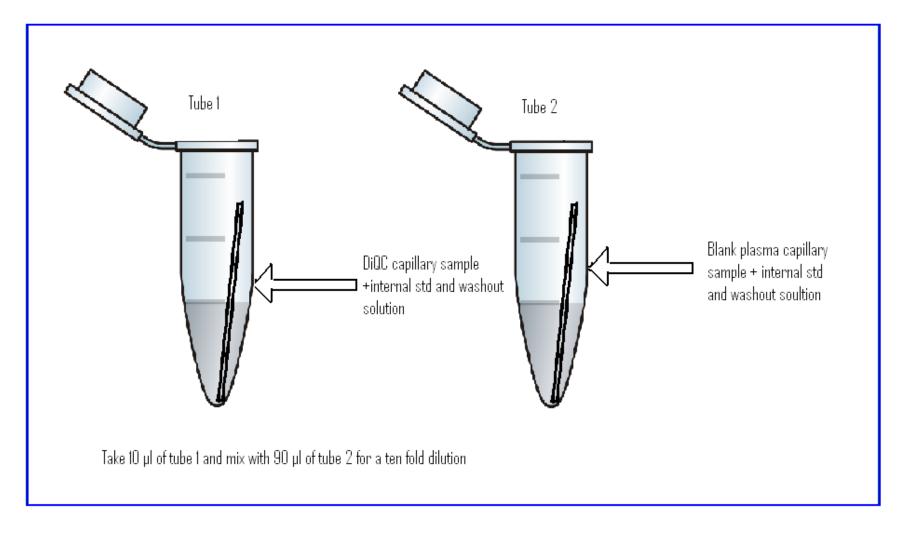
Washout solution

Washout solution = 5% ammonia in water.

Should not precipitate the proteins in the capillary tube. Oligonucleotide are soluble in aqueous solutions.

Quality Control CMS samples stored at -20°c in Eppendorf tubes

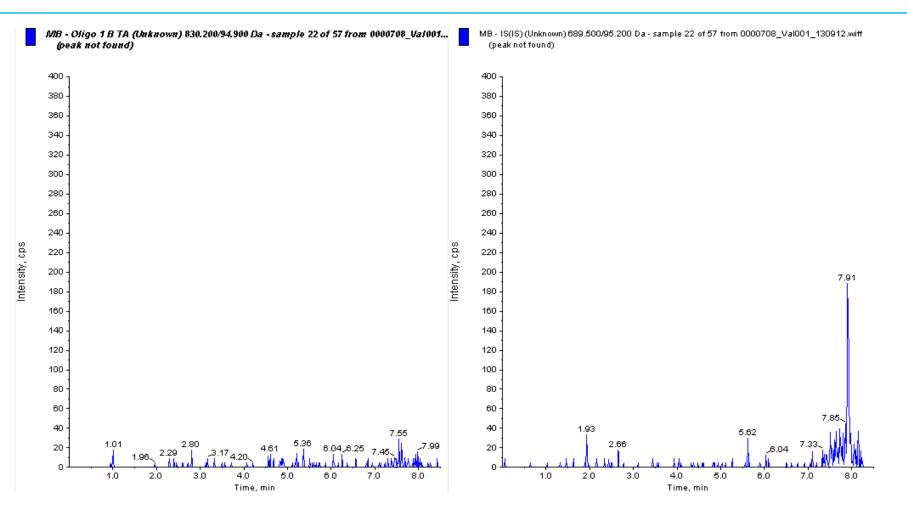
Washout solvent added once CMS have been thawed



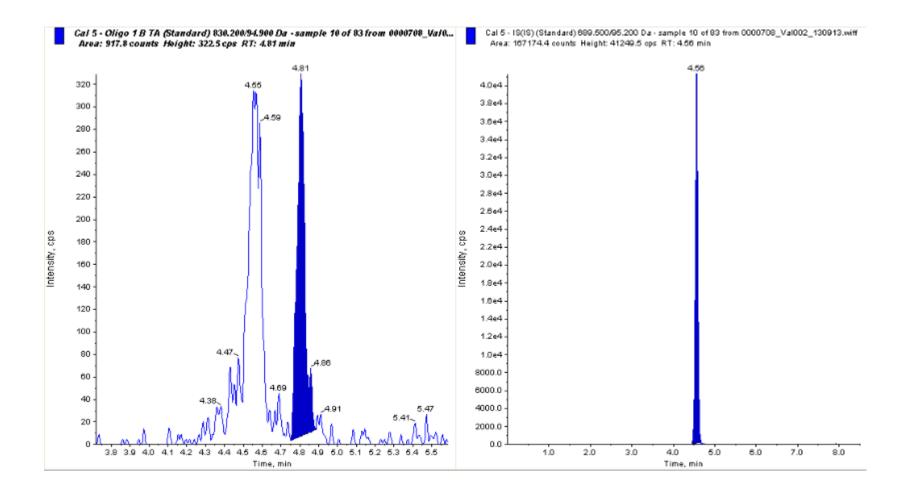
Plasma capillary micro-sample extraction procedure

1	Draw sample into a 20μL capillary and place into 1.5 mL Eppendorf tubes
2	Add 250 μ L of water: ammonia (95:5 v/v) to each tube and mix for 20 min to ensure the sample has fully equilibrated.
3	Add 50 μL of phenol: chloroform: isomyl alcohol (25 : 24 : 1, v/v/v).
4	Transfer 300 μ L of the supernatant to a 2 mL 96 well plate
5	Add 300 μL of Water: HFIP: TEA (100: 2: 0.2, v/v/v)

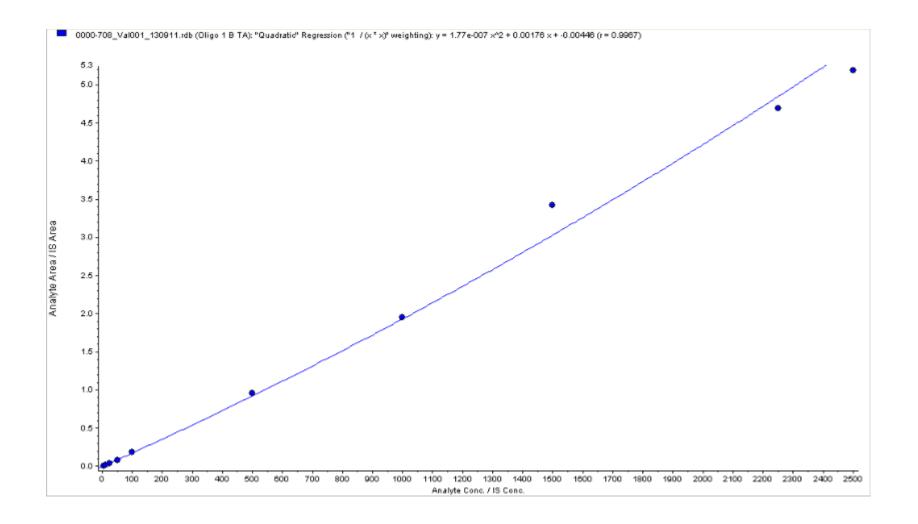
Dilution method



Results



Blank chromatogram



Lower limit of quantification 5ng/mL

Calibration curve 5-2500 ng/mL

Inter-assay accuracy and precision

	LLOQ QC	LoQC	MeQC	HiQC	DiQC
	5 ng/mL	15 ng/mL	175 ng/mL	2000 ng/mL	12500 ng/mL
Mean ng/mL	5.62	14.3	192	1950	12900
SD	0.507	1.13	9.63	83.5	462
RSD %	9.0	7.9	5.0	4.3	3.6
Accuracy %	112.4	95.3	109.7	97.5	104.0
N	18	17	17	18	6

Spiked individual data at LoQC level

	Observed concentration ng/mL	Accuracy (%)
Ind 1	14.7	97.9
Ind 2	15.0	99.8
Ind 3	14.2	94.8
Ind 4	14.4	96.0
Ind 5	12.9	85.9
Ind 6	14.5	96.6

- Recovery 83 %
- 24 hour RT stability demonstrated

Conclusion

Practical application of CMS demonstrated.

& LLOQ of 5 ng/mL achieved from 20 μL of plasma.

Fully validated method that met FDA and EMA guidelines.

Acknowledgements

Dr Phillip Turpin Dr Matthew Ewles Dr Lee Goodwin

Any Questions

