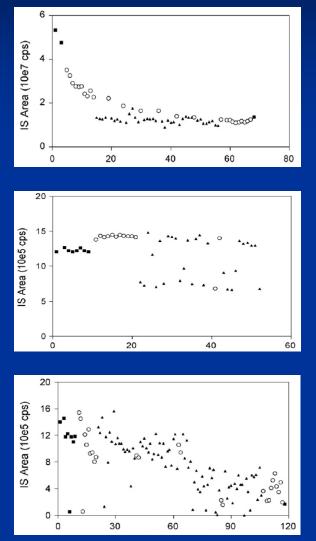


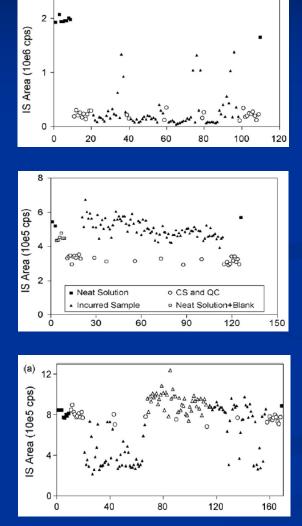
Leveraging Successful Troubleshooting Experiences for the Prevention or Reduction of Internal Standard Response Variations during LC-MS Bioanalysis

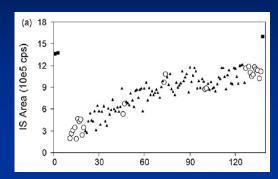
<u>Aimin Tan</u>, Kayode Awaiye, and Fethi Trabelsi (BioPharma Services Inc., Toronto, Canada)

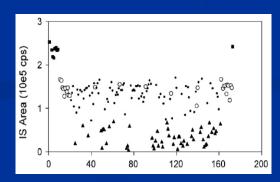
EBF 6th Open Symposium, Barcelona, Spain, November 20-22, 2013

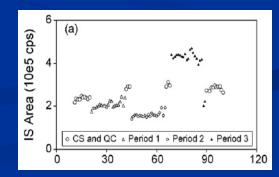
You might have experienced different IS response variations just as I did in the past!

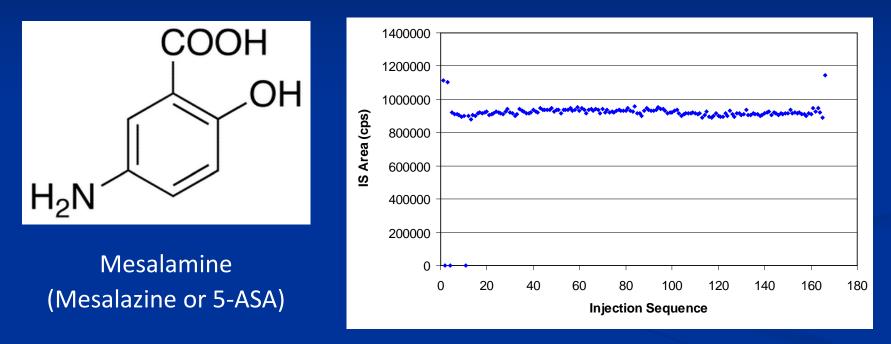

Internal standard response variations during incurred sample analysis by LC–MS/MS: Case by case trouble-shooting


Aimin Tan^{a, b,*}, Saleh Hussain^a, Adrien Musuku^b, Robert Massé^b


^a Anapharm, Richmond Hill, Ontario, Canada


^b Anapharm, Ste-Foy, Québec, Canada


Look familiar?


Can we reduce or prevent IS response variations?

Yes, we can!

Average % of 15 repeats (study wise)	0.2
Average % of IS repeats (study-wise)	(0-1.9)
Average % of IS repeats (sample-wise)	0.2
% Studies without IS repeats	60
% Studies that need investigation	0

Based on 43 studies and a total of 50k incurred samples that were analyzed at BioPharma Services Inc.

A typical batch from mesalamine study

Mean: 9.2 E5; Min: 8.9 E5; Max: 9.6 E5

Within ±4% variation in absolute response!

How did we accomplish that?

Many factors can cause IS variations!

IS solution	Stability and/or solubility issue	
IS addition	Missed or double addition; imprecise addition	
Extraction	Variation in recovery for IS & co-extracted matrix components	
Injection	Missed or variable injection vol.	
Chromatographic separation	Co-elution with ion-suppression or enhancement component(s); late eluter; column deterioration	
MS detection	Ion suppression/enhancement; ionization/detector saturation; inadequate optimization	
Others	Wrong materials; leakage; inadequate equipment/instrument use, etc.	

1) 2) A. Tan et al., J. Chromatogr. B, 877 (2009) 3201.

A. Tan et al. (2012), Internal Standards for Quantitative LC-MS Bioanalysis, in LC-MS in Drug Bioanalysis (eds. Q.A. Xu and T.L. Madden), Springer, New York, USA, p. 1.

No approach is perfect for monitoring IS variation.

Setting the upper and lower limits for IS response

e.g. 50-150% of the mean IS response of known samples (CS & QC)

 Performing a trend analysis on IS responses of known samples to define the acceptable variation for unknown samples

- 1) A. Tan et al., J. Chromatogr. B, 877 (2009) 3201.
- 2) M. Jemal et al., Rapid Commun. Mass Spectrom., 17 (2003) 1723.
- 3) R. Bakhtiar, T.K. Majumdar, J. Pharmacol. Toxicol. Methods, 55 (2007), 227.
- 4) Global CRO Council (GCC), Bioanalysis, 3 (2011) 1323.

But, there is a bottom line...

Summary of IS repeats in our lab

Due to low IS response (%)	70
Due to high IS response (%)	30
Unmatched original and reassay results (due to error in IS addition) (%)	30 (<100)
Overall IS addition error rate (%)	0.06

Based on a total of 50k incurred samples that were analyzed at BioPharma Services Inc.

- 1) Unmatchable original results must be singled out for reassay;
- 2) Any IS variation patterns that were not seen in R&D/assay validation should be detected and investigated upon.

Even reproducible results may not be reportable!

Response vs. concentration relationship might have changed.

linear for CS \rightarrow quadratic for samples of abnormal IS responses or vice versa

Abnormal IS responses may be outside IS linearity range.

Ionization or detector saturation;

Analyte & IS may not be simultaneously detected inside MS.

- 1) G. Liu, Q.C. Ji, M.E. Arnold, Anal. Chem., 82 (2010) 9671.
- 2) A.K. Hewavitharana, J. Chromatogr. A, 1218 (2011) 359.
- 3) A. Tan and K. Awaiye (2013), Use of Internal Standards in LC-MS Bioanalysis, in Handbook of LC-MS Bioanalysis: Best Practices, Experimental Protocols, and Regulations (eds. W. Li, J. Zhang and F. L.S. Tse), John Wiley & Sons Inc., Hoboken, NJ, USA, p. 217.

Strategy 1: Choose a good IS and use it properly

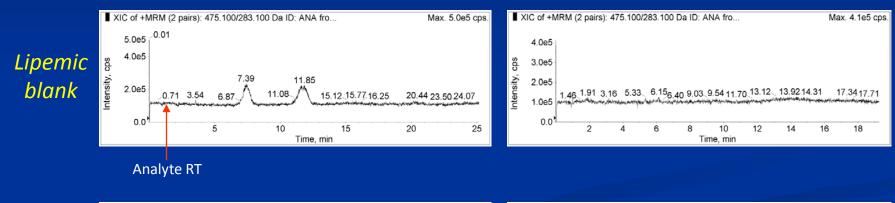
Select the best IS possible;

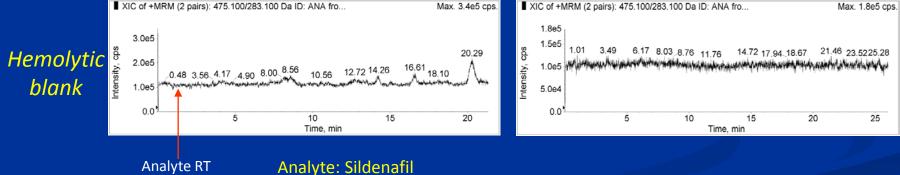
¹³C and/or ¹⁵N > deuterated > structural analogue;
 A stable isotope labeled IS for parent drug is a structural analogue IS for the metabolite!

- One IS for each analyte;
- Determine an appropriate IS concentration;
- Co-elution of analyte and its IS;
- Check working IS solubility & stability;
- Check IS linearity;
- Accurate and reproducible addition of IS.

A. Tan and K. Awaiye (2013), Use of Internal Standards in LC-MS Bioanalysis, in Handbook of LC-MS Bioanalysis: Best Practices, Experimental Protocols, and Regulations (eds. W. Li, J. Zhang and F. L.S. Tse), John Wiley & Sons Inc., Hoboken, NJ, USA, p.217.

Strategy 2: Achieve high & consistent recovery


Determine the best extraction strategy;


- Make sure there is sufficient buffering capacity!
- Adequate transfer volumes;
- Adequate reagent volumes.

Strategy 3: Don't stop at successful matrix factor test!

Mobile Phase A

Mobile Phase B

Matrix: Human EDTA plasma Extraction: SLE

Other Strategies

- Test different LC columns and different LC–MS systems;
- Add extra tests as needed;

e.g. check autosampler stability for hemolyzed samples if the analyte is a phenolic compound*

- Precise execution of validated assay;
- Close monitoring of assay performance;
- Adequate maintenance of lab equipment and instruments;

Hire the best research scientists!

^{*} E.-R. Bérubé, M.-C. Lacasse, M. Furtado, F. Garofolo, Bioanalysis, 5 (2013) 1491.

Quiz: What's the cause of IS variation? What could be improved in this method?

Analyte:	Weak base	Aliquot 300 µl plasma sample
IS: Matrix:	D ₇ Human K ₂ EDTA plasma	+ Add 700 μl 50 mM Na ₂ HPO ₄
Conc. range:	15-4000 pg/ml (linear, 1/C ²)	Add 100 µl IS in 50% MeOH
Extraction:	SPE, Bond Elut-C18 100 mg/1 ml	↓ Mix by vortexing ↓
Activation	: 1 ml MeOH & 1 ml H ₂ O>	Load on activated cartridge
Scenario:		Wash with 1 ml H ₂ O
1) Successfu recovery	l assay validation (analyte 66-71%);	Wash with 1 ml 50% MeOH
 Low & variable IS responses mainly with study samples; 		Elute with 0.5 ml ACN
 20% of IS repeats still had low IS responses. 		Evaporate at 40°C
4) Good agreement between reassay and initial results, including ISR.		↓ Reconstitute in 200 μl MP

Conclusions

- Many different factors can cause IS response variation.
- Once observed, investigation should be done to find the root cause. It is important to demonstrate that the accuracy of quantitation has not been impacted.
- Sometimes, reproducible results may still not be reportable.
- IS response variation is preventable or at least it can be significantly reduced through thoughtful assay development and precise execution of validated assays.

Acknowledgements

Keqiang P. Hang, Besy Jose, Paresh Joshi, Jignesh Patel, Gurwinder Gill For their excellent job in assay development and application.

Renzo G. DiCarlo, CEO Lorelei Lutter, VP BD & Project Management Wendy Rossini, CFO For their support and encouragement.

Thank you for your attention! Questions or comments?

Aimin Tan

Ph.D., Senior Principal Scientist

BioPharma Services Inc. 4000 Weston Rd., Toronto, Ontario, Canada M9L 3A2 <u>atan@biopharmaservices.ca</u> Dr.aimintan@gmail.com

