Analyte instability issues in blood

EBF Barcelona, Spain December 2010

Ronald de Vries (rdvries@its.jnj.com)

Drug Safety Sciences, Department of Bioanalysis, Belgium

Outline

- Why and when stability in plasma but not in blood
 - Literature overview
- Janssen in-house examples
 - Instability
 - Red Blood Cell (RBC) / plasma distribution
- Conclusions and recommendations

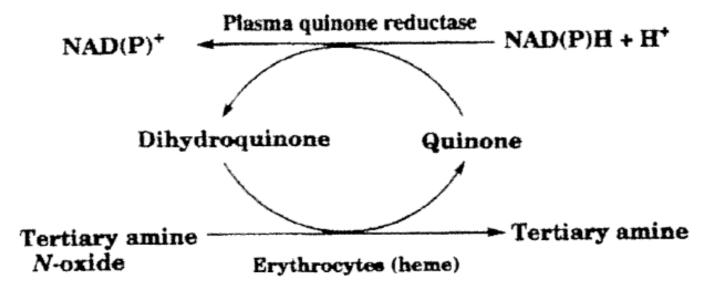
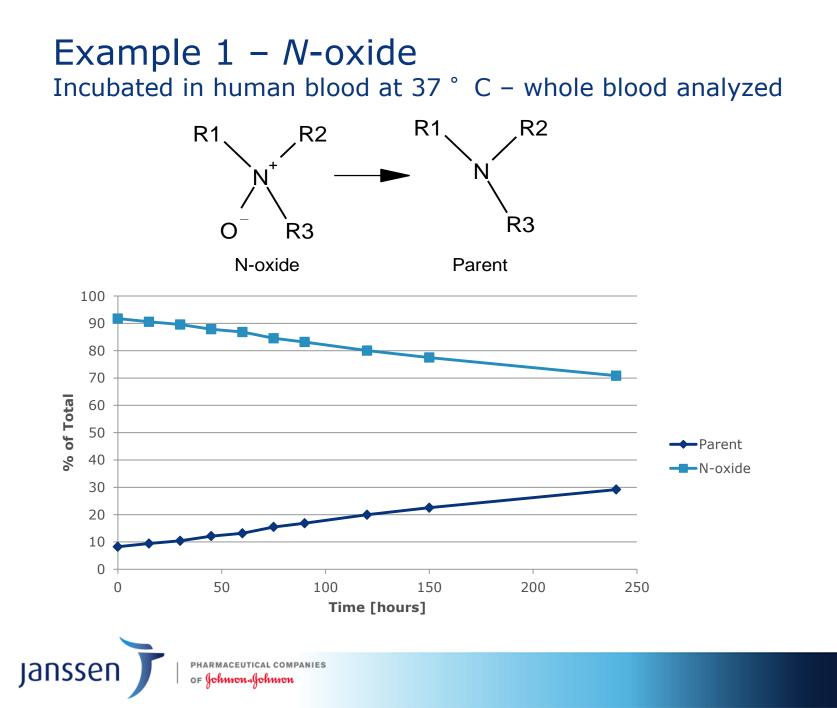
Literature

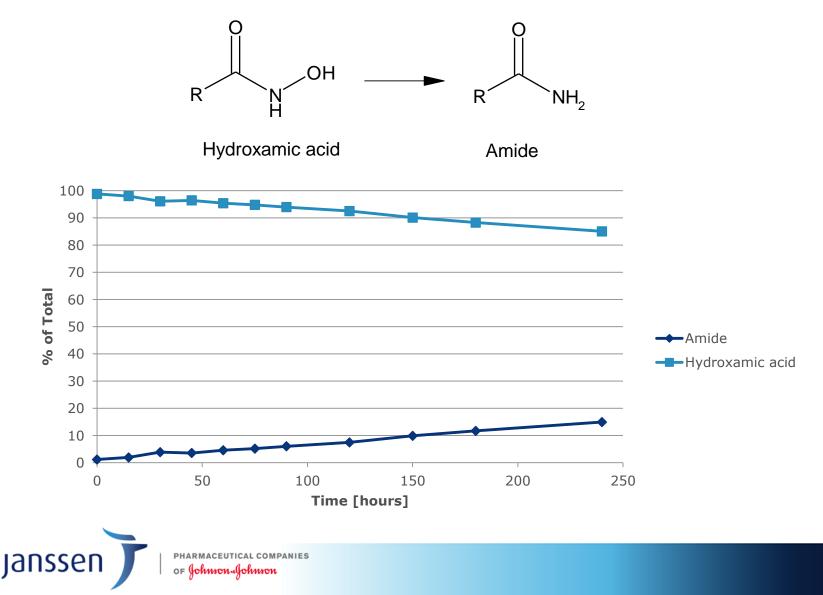
- Reduction of hydroxamic acids to the corresponding amides catalysed by rabbit blood. *K. Sugihara et al., Xenobiotica 30 (2000) 457-467*
- Nonenzymatic Reduction of N-hydroxy-2-acetylaminofluorene to 2-Acetylaminofluorene by Heme in the Presence of Hydroquinones. *K. Shigeyuki et al., Journal of Health Science, 46 (2000) 66-69*
- A unique tertiary amine N-oxide reduction system composed of quinone reductase and heme in rat liver preparations. *K. Shigeyuki et al., Drug Metabolism and Disposition 27 (1999) 92*
- Reductive dechlorination of p,p'-DDT mediated by Hemoproteins in the hepatopancreas and blood of goldfish.
 K. Shigeyuki et al., Journal of Health Science 45 (1999) 217 221
- Quinone-dependent tertiary amine N-oxide reduction in rat blood. *K. Shigeyuki et al., Biol. Pharm. Bull.* 21 (1998) 1344-1347
- Debromination of (a-bromoiso-valeryl) urea catalysed by rat blood.
 S. Kitamura et al., Journal of PARMACY AND Pharmacology 51 (1999) 73-78
- N-oxide reduction by hemoglobin, cytochrome C and ferrous ions.
 G. Powis et al., Res Commun Chem Pathol Pharmacol 1 (1980) 143-150
- Reduction of the prodrug loperamide oxide to its active drug loperamide in the gut of rats, dogs and humans. *K. Lavrijsen et al., Drug Metabolism and Disposition 23 (1995) 354-362*

Literature

- Two-step reduction in blood, catalyzed by haemoglobin
- Published compound classes:
 - *N*-oxides (reduction to amine)
 - Hydroxamic acids (reduction to amide)
 - Halogenated compounds (reductive dehalogenation; I > Br > Cl > F)

Literature – N-oxides


Fig. 3. Proposed Mechanism for Quinone-Dependent N-Oxide Reduction in Rat Blood

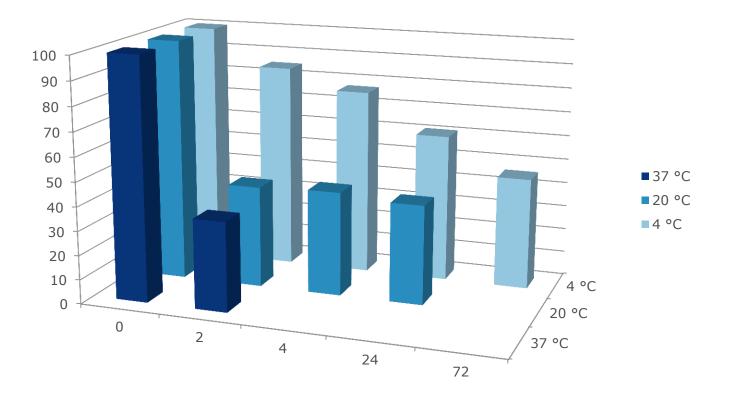
Quinone-dependent tertiary amine N-oxide reduction in rat blood. *K. Shigeyuki et al., Biol. Pharm. Bull.* 21 (1998) 1344-1347

Example 2 – Hydroxamic acid Incubated in human blood at 37 ° C – whole blood analyzed

RBC/plasma distribution Whole blood OK, plasma fraction NOT OK

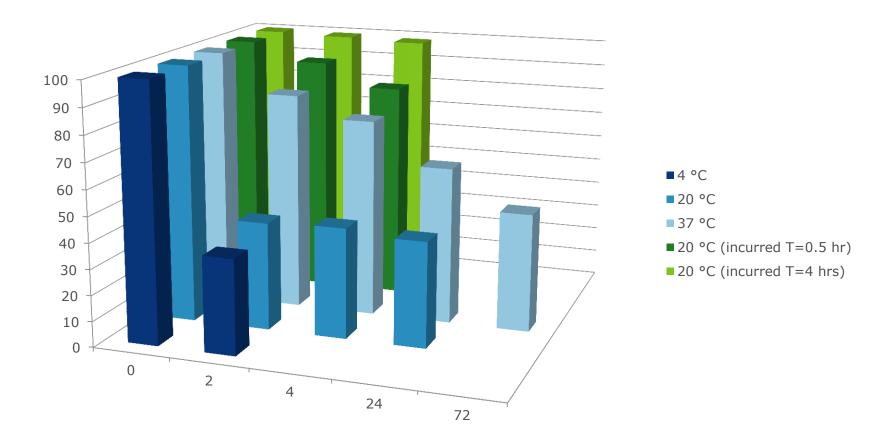
Incubation	Spiked	% of Ref	% of Ref
conditions	(ng/ml blood)	Whole blood	Plasma fraction
2 hours 4 °C	5.00	89	91
2 hours RT	5.00	101	81
2 hours 37 °C	5.00	93	72
2 hours 4 °C	900	95	93
2 hours RT	900	91	84
2 hours 37 °C	900	92	82

RBC/plasma distribution


High concentration OK, low concentration NOT OK (whole blood was not analyzed, only the plasma fraction was analyzed)

Incubation	Spiked	% of	% of Ref
conditions	(ng/ml blood)	blood conc.	Plasma fraction
Reference	0.52	83	
2 hours at 4 °C	0.52	59	71
2 hours at RT	0.52	73	88
24 hours at RT	0.52	63	76
2 hours at 37 °C	0.52	84	102
Reference	120	150	
2 hours at 4 °C	120	149	100
2 hours at RT	120	151	101
24 hours at RT	120	150	100
2 hours at 37 °C	120	151	101

RBC/plasma distribution


Apparent degradation at all tested temperatures, but actually redistribution

Janssen Harmaceutical companies

RBC/plasma distribution

Apparent degradation at all tested temperatures, but actually redistribution

Conclusions and recommendations

- Compounds can be stable in plasma but not in blood
 - Plasma stability is not always predictive for blood stability
 - Conduct of blood stability experiments cannot be ignored
- Compound classes with concerns can be identified
- Special caution with *N*-oxides as major metabolites
 - Incurred plasma samples can be spiked to blood to conduct experiment in absence of available reference compound
- RBC / plasma distribution makes interpretation difficult
 - Recommendation to analyze whole blood instead of plasma

Acknowledgement

- Dirk Van Roosbroeck
- Luc Embrechts
- Marc De Meulder
- Ellen Proost
- Philip Timmerman

